如图(1),在平面直角坐标系中二次函数y=-x 2 +bx+c的图象经过点A(1,-2),B(3,-1)(1)求抛物线的

如图(1),在平面直角坐标系中二次函数y=-x 2 +bx+c的图象经过点A(1,-2),B(3,-1)(1)求抛物线的解析式及顶点C的坐标;(2)请问在y轴上是否存在点P,使得S △ABC =S △ABP ?若存在,求出点P的坐标;若不存在,请说明理由;(3)请在图(2)上用尺规作图的方式探究抛物线上是否存在点Q,使得△QAB是等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由(不用证明).

(1)由l 2 的解析式为y=-x 2 +bx+c,联立方程组:
-1+b+c=-2
-9+3b+c=-1

解得得:b=
9
2
,c=-
11
2

则l 2 的解析式为y=-x 2 +
9
2
x-
11
2
=-(x-
9
4
2 -
7
16

点C的坐标为(
9
4
,-
7
16
).

(2)如答图1,过点A、B、C三点分别作x轴的垂线,垂足分别为D、E、F,
则AD=2,CF=
7
16
,BE=1,DE=2,DF=
5
4
,FE=
3
4

得:S △ABC =S 梯形ABED -S 梯形BCFE -S 梯形ACFD =
15
16

延长BA交y轴于点G,直线AB的解析式为y=
1
2
x-
5
2
,则点G的坐标为(0,-
5
2
),设点P的坐标为(0,h),
①当点P位于点G的下方时,PG=-
5
2
-h,连接AP、BP,
则S △ABP =S △BPG -S △APG =-
5
2
-h,又S △ABC =S △ABP =
15
16
,得h=-
55
16
,点P的坐标为(0,-
55
16
).
②当点P位于点G的上方时,PG=
5
2
+h,同理h=-
25
16
,点P的坐标为(0,-
25
16
).
综上所述所求点P的坐标为(0,-
55
16
)或(0,-
25
16
)(7分)

(3)作图痕迹如答图2所示.
由图可知,
当以AB为腰以A为顶点时,以点A为圆心,以AB为半径画圆与抛物线交与Q 1
当以AB为腰以B为顶点时,以点b为圆心,以AB为半径画圆与抛物线交与Q 2
当以AB为底边时,作AB的垂直平分线交抛物线于Q 3 ,Q 4
故满足条件的点有Q 1 、Q 2 、Q 3 、Q 4 ,共4个可能的位置.(10分)
温馨提示:答案为网友推荐,仅供参考
相似回答