典型矿床实例

如题所述

一、韦帕(Weipa)铝土矿床

(一)成矿地质背景

韦帕矿区位于澳大利亚昆士兰州约克角半岛西海岸,南纬12°,顺西海岸延伸160km,宽40km。该地区属热带季风型气候,年平均温度31℃,年降雨量约1600mm,地表覆盖稠密的热带森林植物。

约克角半岛东部下伏以科恩内围层为核心的古生代塔斯曼褶皱带,其核心是由古生代火山岩和沉积岩所环绕的元古宙中期变质岩,其西部是中生代卡奔塔利亚盆地的一部分,之后成为卡隆巴盆地的一部分。

区域内变质岩或花岗岩基岩之上为侏罗系泥岩和粘土岩,层厚约250m,其上部是白垩纪早期形成的滨海相、浅海相和三角洲相的罗令当群,厚可达600m,由泥岩、砂岩和粗砂岩的多个连续的沉积旋回组成。韦帕地区沉积物主要由科恩内围层演化而来。韦帕地区的东部是广为伸展的麦鲁纳平原,该平原较韦帕台地低10~100m,由罗令当群下部组成。在麦鲁纳平原较高的河间地区发育由罗令当群泥灰岩而来的铁质红土。新近纪的海侵事件之后,区内粉砂岩、砂岩及部分砾岩在卡隆巴盆地中沉积。这些沉积物覆盖在约克角半岛西南部罗令当群沉积物之上。未固结的砂石和粉砂覆盖于海岸一带和韦帕地区海拔较低部位。

(二)矿床地质特征

韦帕铝土矿矿床位于约克角半岛西岸,南纬11°00'~14°30',东经141°30'~142°00'。矿区海拔2~150m,局部地区沼泽化。区域内铝土矿覆盖面积约2500km2,南北延伸350km。

韦帕矿床发育较好的红土剖面(Bardossy et al.,1990),自上而下依次为:

土壤层:厚0~2m,平均厚度0.6m,一般是棕色至灰色的砂壤土,并伴有许多铝土矿豆粒。

硬结层:较少,厚0.3m,呈现出下伏铝土矿矿层被改造和被胶结的外表。

铝土矿层:主要的含矿层位。呈红褐色到浅黄褐色,矿层平缓、胶结松散、覆盖物薄(<1m),厚1~10m,平均厚3.5m。上部是由10%~30%高岭石的铁质三水铝石粗大结核组成,下部是松软的豆状三水铝石层,豆粒直径4~6mm(最大10mm)。豆粒呈坚硬的同心球状,外壳为颜色深浅不一的互层。部分豆粒中心还有局部被溶蚀的石英颗粒。也有复合豆粒出现,直径可达6cm,由若干一般大小的松散豆粒及一些砂粒或粘土粒大小的颗粒构成,这些颗粒包裹在颜色深浅不同的同心外壳层所组成的外壳之中。松散的豆石结构是韦帕铝土矿的一个显著特点。

腐泥土层:厚10~30m。由白色至浅棕色和粉红色的高岭土粘土、砂质粘土及带有长石砾岩的残余沉积物组成。砂质粘土厚1~5m;高岭土粘土厚2~8m,含80%~90%的高岭石和5%~20%的石英。

母岩:约克角半岛的基岩为变质岩和花岗岩类,其上平缓地覆盖着第三系长石砂岩和砂质粘土岩。

(三)矿石特征

韦帕矿床的主要矿石矿物为三水铝石,其次为勃姆石、刚玉、钛铁矿、磁铁矿、赤铁矿、褐铁矿、针铁矿;脉石矿物主要是高岭石和石英。矿石平均含Al2O352%~58%、SiO25%、Fe2O37%、TiO22%~3%。韦帕矿床不但具有较高的铝土矿含量,同时高岭土和勃姆石的含量也较高。

高岭土呈白色,块状,以透镜体形式赋存在腐泥土层中;透镜体向西南方向延伸,长2~3km,宽300m,平均厚4.5m。高岭土主要成分为SiO251.6%、Al2O333.05%、TiO21.36%、Fe2O31.57%、K2O0.18%,其他成分小于0.05%。目前已探明的和潜在的高岭土资源量为17.3Mt,具有较高的工业价值。

勃姆石的含量一般与豆石层(或铝土矿层)的厚度相关,例如,厚2m的豆石层含勃姆石25%,而更厚的豆石层中勃姆石的含量则不到5%。韦帕矿床相对高的勃姆石含量与相对简单的大气水淋滤条件存在一定关系。

(四)成矿时代

古气候学研究表明,韦帕地区在早白垩世区域隆起之后就已发育红土化,铝土矿化作用在古新世开始,并在始新世和渐新世持续矿化,矿化作用可能结束于中新世早期,因为自中新世开始该地区气候变得干燥,不再利于铝土矿化形成。

(五)矿床成因

母岩的性质是铝土矿形成的关键,母岩的多孔性和良好的渗水性、极低的侵蚀速度和长期有利的气候条件是形成铝土矿的主要因素。Grubb(1971)通过对韦帕铝土矿中的重矿物(如锆石)的分析发现,铝土矿中重矿物和下伏的风化沉积岩相似,认为铝土矿可能来自长石质母岩。Evans(1965)指出,长石的存在是母岩的一种重要的成分特征。对全区开展的地质研究显示,在离海岸线较远的东部和东南部,红土化和铝土矿化的强度减弱,在东南方向甚至还产出新鲜的长石砂岩,表明气候条件对韦帕红土矿化作用具有重要影响。

韦帕铝土矿的形成主要经历了陆生和表生富集两个阶段:陆生阶段,大陆准平原化,含铝的长石质母岩经风化作用形成含铝土矿物、粘土矿物、氧化铁矿物的富铝钙的红土、红土残积坡积层或红土铝土矿;表生富集阶段,原始铝土矿层随地壳抬升,粘土矿物中的硅质大部分被地下水、地表水溶解成Si(OH)4而淋失,部分硅质层凝胶与大部分氢氧化铝凝胶形成粘土矿物,使铝质加富,原始铝土矿层逐渐转变为有工业价值的铝土矿层。

总的来讲,在热带地区,季风环境对铝土矿化有利,红土的范围较为受限,在高原、台地的残余部分或岛上,母岩受到持续的侵蚀作用和长期的大气水淋滤形成含铝土矿的红土和铝土矿。另一方面,相对静止的环境和相对自由的地下排水系统对成矿有利,韦帕矿床一个最基本的特征是缺少因物理或化学条件改变而引起的海水再造结构,表明该矿床主要形成于相对宁静的构造环境中。

(六)勘查历史

韦帕铝土矿床由Evans于1955年发现。1965年澳大利亚联邦铝业公司(Comalco)对韦帕矿床进行了系统勘探,勘探设计按照152m×152m的网度钻孔,储量控制按照38m×38m的网度钻孔,初步获得铝土矿资源量500Mt,Al2O353%~56%,SiO24.5%~9%。1985年矿山年产量为11.8Mt,洗选后获铝土矿干矿石7.3Mt,平均品位为Al2O355%,SiO25%,从开始开采到1985年末,共采出223Mt铝土矿矿石。力拓公司于2002年对该矿床重新进行勘探,获得铝土矿资源量约3600Mt,其中Al2O3品位为55%,SiO2含量为5%~5.5%(力拓2002年年报);2006年探明和推测的铝土矿储量为2114Mt,其中Al2O3品位为51%(力拓2006年年报)。韦帕矿床所有权现归力拓集团所有。

二、桑加雷迪(Sangaredi)铝土矿床

(一)地质特征

桑加雷迪矿床位于几内亚的西部,靠近Kogon河。该矿床发现于20世纪初,初步探明储量大于2亿t,Al2O3平均品位59%,1973开始开采。矿区台地海拔为200~240m,台地边缘由陡峭的斜坡构成,没有垂直的悬崖。在矿区4km2的面积内覆盖着连续的铝土矿矿层,矿层形态中等不规则,向南西方向延伸(图13-5)。

桑加雷迪矿床具有明显的铝土矿剖面(图13-6),几乎全部由原地的再沉积铝土矿组成。

(1)土壤层:厚可达1m,夹杂有腐殖质和铝土矿-红土砾石。

(2)硬结层:普遍缺失,仅沿台地边缘发现一些铁质红土。

(3)上部再沉积单元:厚约20m,呈粉红色、黄色、灰色,主要由被胶结的铝土矿卵石砾岩和砂粒砾岩和铝土角砾岩交替组成,也称作碎屑铝土矿。碎屑岩铝土矿夹层普遍发育。胶体结构和鲕状结构发育,主要分布于底部,厚2~3m,岩相横向渐变为铝土矿砾岩。铝土矿为孔隙状和囊泡状,坚硬,呈层状,矿床的上部和中部存在明显的不整合接触界面。

(4)中部再沉积单元:厚25~30m,颜色为粉红色、紫色及灰色。主要由坚硬的铝土砾岩组成,具有较薄的砂碎屑岩铝土矿夹层,底部岩相渐变过渡成为豆状铝土矿和隐晶质铝土矿。豆状铝土矿主要由铝土矿砾岩演变而成,是在铝土矿再沉积之后发生的逐渐变化。

(5)下部再沉积单元:厚5~10m,浅棕色至粉红色,在矿床的南部由欠固结的铝土矿砾岩组成,砾岩为复矿碎屑岩,部分由古生代片岩及粒玄岩演变而成。这种砾岩因其具有较高的TiO2含量(7%~14%)而与上覆单元区分开。该单元也产出胶状铝土矿、隐晶质铝土矿、鲕状铝土矿和豆状铝土矿。这些矿石多由碎屑铝土矿原地蚀变而成。下部再沉积单元与下伏残留铝土矿之间存在着非常明显的接触关系,局部有较薄的铁壳层。

图13-5 桑加雷迪铝土矿矿床地质图

图13-6 桑加雷迪铝土矿主要单元剖面图

(6)原地铝土矿层:厚2~3m,棕色至红色,坚硬,带有下伏母岩的残余构造。

(7)腐泥土层:厚10~20m,粉红色至紫色,带有母岩的残余构造,呈孔隙状,主要由高岭石组成。

(8)母岩:母岩为泥盆系页岩和粉砂岩,呈灰色,具有明显的层理,局部含化石。

(二)化学成分

桑加雷迪矿床矿石化学成分具有氧化铝高、铁含量低的特点。Al2O340%~80%、SiO20.1%~30%、Fe2O30.8%~33%、TiO21.5%~14%。矿石矿物主要是三水铝石,其次为针铁矿、赤铁矿、高岭石和钛矿物。

(三)成矿时代

剖面上残留部分矿物的形成时代为晚白垩世到始新世。碎屑铝土矿矿物的侵蚀和再沉积可能发生在铝土矿形成的第一阶段之后不久。在古近纪和新近纪,再沉积单元的进一步铝土矿化持续进行。在更新世间冰期之后,现今的气候条件似乎有利于这种矿化过程的持续。

(四)成因模式

综合研究表明,在矿床下部的腐泥土层和铝土矿层是真正的原地红土型风化剖面。在矿床的中部和东部,铝土矿层已被侵蚀,残留部分腐泥土层。搬运来的碎屑物质在新形成的侵蚀面和断裂下降的侵蚀面上堆积,随后遭受新的侵蚀。所有的沉积物质都是由附近的红土型风化剖面演变而来的。在碎屑矿物堆积之后,又开始了新一期的铝土矿化,导致该矿床中的再沉积单元整体发生铝土矿化。这些单元的碎屑状特征及其高渗透性确保了桑加雷迪地块在最终隆起之后具有特别有利的淋滤和泄水条件。与此过程相伴的是铝土矿中的氧化铝的局部重新分配。

(五)勘查历史

20世纪20年代法国地质学家就已对该矿床进行了普查,1948年起SBM(Societe des Bauxites du Midi)布设300m×300m网度对该矿床进行了钻孔验证,获得1.8亿t以上的高品位铝土矿。1963年CBG联合风险公司成立,并对矿床开展了进一步的钻探工作,设计了143个钻孔,之后又进行了大量的钻探工作,使钻孔网度达到150m×150m。1973年矿床正式开采,第一阶段获得了当时世界上质量最好的一部分矿石:Al2O3约60%,SiO21%,Fe2O32%~4%,TiO23%~5%;第二阶段矿石的品位相当不均匀,特别是高岭石粘土透镜体给开采造成了极大困难。部分铝土矿非常坚硬并且黏结,使得开采更加困难。1985年SOGEREM对不同的矿石品位和无矿夹层进行了详细的评价,1986年矿石平均品位为Al2O360%,SiO21%,Fe2O34%,TiO23.5%。目前该矿床由几内亚铝土矿公司和美国阿尔考采矿公司所有。

三、洛斯皮契夸斯(Los Pijiguaos)铝土矿床

洛斯皮契夸斯矿床位于委内瑞拉的玻利维亚州的西部,Caracas市以南约500km处。这是委内瑞拉当前唯一开采的铝土矿矿床,也是南美地区著名的铝土矿生产地区之一。洛斯皮契夸斯铝土矿矿石具高品位的特征(Al2O3含量为50%),目前所勘探的矿体仅占整个资源量的一小部分。

(一)地质背景

洛斯皮契夸斯地区位于圭亚那地块西北缘(图13-7a),北纬6°22',西经66°52'。基底为中元古代帕拉瓜扎环斑花岗岩岩基(图13-7b)。该岩基面积超过3万km2,其中部为中元古界罗赖马组石英岩、砂岩、页岩所覆盖。花岗岩北部为塞拉德拉塞巴塔纳,高度通常为1000m以上(卡拉马夷平面),最北部为塞拉尼亚德洛斯皮契夸斯,平坦部位为海拔600~700m的努里亚夷平面。努里亚夷平面代表了晚白垩世—古近纪圭亚那地块上最后一次强烈的侵蚀事件(McConnell,1968)。Soler和Lasaga(2000)把努里亚夷平面的形成时代下限定在35Ma,并以这个时间作为洛斯皮契夸斯地区开始形成铝土矿的时限。

图13-7 洛斯皮契夸斯矿床位置图(a)和区域地质图(b)

帕拉瓜扎花岗岩被认为是洛斯皮契夸斯风化层的母岩(Bardossyetal.,1990),其主要矿物有石英、微斜长石、奥长石、富Fe黑云母和角闪石,副矿物包括磷灰石、榍石、钛铁矿、赤铁矿和锆石。铝土矿层直接形成于帕拉瓜扎花岗岩之上。

(二)矿床地质

强烈的风化作用可以引起大范围的帕拉瓜扎花岗岩形成次生壳。但是,有些地方仍可见到一些未蚀变的新鲜母岩。在风化强烈的部位发育有较好的红土剖面,自上而下依次为土壤层、硬结层、铝土矿层、过渡带、腐泥土层和母岩:

(1)土壤层:较薄,厚度小于1m,由松散、浑圆的铝土矿结核(假豆石)和植物组成。

(2)硬结层:厚0.3~1.5m。坚硬,主体部分为浅红至浅黄-褐色,具有蜂窝状构造和较大的形状不规则的孔隙;在主体中包裹有次圆形、红褐色至粉红色的块状结核。在高原部位发育中元古界罗领马组石英岩、砂岩和页岩,沿台地边缘有大量次圆或浑圆状铝土矿碎屑,表现出经过机械磨圆的迹象。

(3)铝土矿层:平均厚度达7.6m,最厚15m。坚硬,块状、土状,略带不同色调的浅红褐色到较深的褐色或较浅的淡黄色。该层完全由三水胶铝矿组成,从上到下可以分为4个明显不同的层(图13-8):坚硬而易碎的凝固的铝土矿交互层;豆状铝土矿夹未固结的结核;含部分胶结豆石的海绵状铝土矿和豆状结构的蜂窝状铝土矿。

(4)过渡带:厚0~2m,高岭石和石英含量逐渐增多,而三水铝石含量则逐渐减少。

(5)腐泥土层:厚可达40m,土状,呈浅黄、褐和粉红色等斑杂状。由高岭石粘土和较多的石英、云母片和一些氧化铁组成;经过厚达2m的“风化岩”过渡带渐变为母岩。

(6)母岩:为粗粒帕拉瓜扎花岗岩,具环斑结构,且黑云母和角闪石的含量变化不定。

(三)成因模式

洛斯皮契夸斯是典型的红土型铝土矿,形成于下伏帕拉瓜扎花岗岩的风化壳之上。在风化剖面中各种铝土矿结构构造交替或重现,标志着铝土矿化作用与机械破坏作用的发生,随后风化产物被短距离搬运到地形低洼处。显微结构上,浑圆状石英和水铝矿聚集体表明其并非简单的原地成因,而是曾发生过风化、机械搬运和再沉积作用。

帕拉瓜扎花岗岩中普遍发育的裂隙对大气水的渗透流动起着控制作用。花岗岩遭受强烈风化作用,成矿物质以颗粒和溶液形式被短距离搬运至夷平面的峡谷之中。铝土矿化引发脱硅和水合作用,Al2O3和Fe2O3在残留土壤中富集,SiO2和碱及碱土金属则完全被淋滤掉。具有交替结构的铝土矿层就是这种反复循环过程的产物。结果是原有的河间地无法得到原地的铝土矿盖层的保护来抵抗花岗岩风化和分解。河流侵蚀可在至今仍由小溪和江河占据着的未得到保护的地区形成新的水系,表明铝土矿化作用仍然在持续进行。

(四)勘探历史

对洛斯皮契夸斯地区进行铝土矿勘探始于1974年,1976~1979年瑞典铝业公司对该地区进行了可行性研究,初步探明矿石储量168Mt,Al2O349%、SiO210.2%。1984年Menendez和Sarmentero(1984)以100m×100m钻探网度为依据重新估算的矿石储量达到58亿t。洛斯皮契夸斯矿床于1987年开始开采,1987~1994年年采铝土矿原矿石量超过5Mt。1998年确定矿石(Al2O3)的边界品位为44%,开采矿石量达到5.2Mt。目前该矿床属于委内瑞拉与圭亚那有限公司(CVG)所有。

图13-8 洛斯皮契夸斯铝土矿红土剖面

参考文献

刘中凡.2001.世界铝土矿资源综述.轻金属,(5):7~12.

中国矿床编委会.1989.中国矿床(上册).北京:地质出版社,334~335.

Bardossy G,Aleva G J J.1990.顾皓民,王恩孚,冯秀纯等译.1994.红土型铝土矿.沈阳:辽宁科学技术出版社,1~506.

Evans H J.1965.Bauxite Deposits of Weipa,in Geology of Australian Ore Deposits.2d ed.:8th Commonwealth Mining and Metallurgy Cong.,(1):396~401.

Grubb P L C.1971.Genesis of the Weipa Bauxite Deposits,NE Australia.Mineralium Depsoita,6:265~274.

Hieronymus B.1985.Etude de I'altèration des roches èruptives de I'ouest du Cameroun.Unpublished Doct.ès Sciences Thesis,University Paris VI.

Mamedov V L,Anufriev I K,Jakuboits,Suma N L.1985.Particularities of the Sangaredi bauxite deposit Guinea.Lzv.Vyssh.Uchebn.Zaved.Geol.Razeved,4:38~47.

McConnell R B.1968.Planation surfaces in Guyana.Geogr.J.,134,506~520.

Menendez A,Sarmentero A.1984.Geology of the Los Pijiguaos bauxite deposits,Venezuela.In:Jacob Jr L.Proceedings of the 1984 Bauxite Symposium,Los Angeles.Am.Inst.Min.Metall.Pet.Eng.,New York,387~407.

Michael F Meyer,Happel U,Hausberg J,Wiechowski A.2002.The geometry and anatomy of the Los Pijiguaos bauxite deposit,Venezuela.Ore Geology Reivews,20:27~54.

Soler J M,Lasaga A C.2000.The Los Pijiguaos bauxite deposit(Venezuela):A compilation of field data and implications for the bauxitization process.Journal of South American Earth Sciences,13:47~65.

温馨提示:答案为网友推荐,仅供参考
相似回答