R语言中一组数据服从威布尔分布,怎么判断拟合的效果

如题所述

首先可以利用fitdistr函数求得weibull分布的形状参数和尺寸参数,假设数据为x:

library(MASS) #fitdistr需要利用MASS包
fitdistr(x, densfun = "weibull",lower=0)

得到形状参数shape与尺度参数scale

然后利用ks.test进行检验:

ks.test(jitter(x),"pweibull",shape,scale)

上边的jitter用来做小扰动,因为如果x中有重复数据的话ks.test会报错,如果x中没有重复数据则不需要jitter。shape是得到的形状参数,scale是得到的尺度参数。

ks.test得到两个结果,一个是D,越小越好,一个是p-value,这个值要大于0.05

温馨提示:答案为网友推荐,仅供参考
第1个回答  2018-05-16
卡方拟合优度检验或者正态性检验都可以检验一串数据是否服从正态分布。如果你用spss里面就有正态性检验QQ图PP图如果你用R就用shapiro.testkolmogorov-smirnov非参数检验K-S检验如果你用matlab就是normplot实际就是QQ图本回答被网友采纳
相似回答