相等的,因为行列式最后是经过变换得到的,最后是用对角线上的乘积,A的行变换和A转置矩阵的列变换得到的对角线是一样的值。
证明如下:
假定A(T)A做了一个特征分解,为:A(T)A = QΣQ(T)
对上式取转置,有AA(T) = QΣ(T)Q(T)
显然,Σ是个对角阵,因而,Σ(T) = Σ
故而,AA(T)和A(T)A有完全一致的特征分解,即共特征值。
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。