求数学学霸

要各种奥数题及答案,例如:数的整除,小数的加减乘除法,牛吃草问题,流水问题,车身长问题,立体图形的体积,平面图形的面积,最大公约数和最小公倍数,数的四则运算等,至少十类,每类至少十题。

1、父亲和儿子今年共有60岁,又知4年前,父亲的年龄正好是儿子的3倍,儿子今年是多少岁?
分析与解答:4年前,父子的年龄和是:60-4×2=52岁,4年前儿子的岁数为52÷(1+3)=13岁,那么儿子今年的岁数是13+9=17岁。
2、已知A×1 =13×80% =C÷75%=D÷ =E÷1 ,且A、B、C、D、E都不为A、B、C、D、E按从小到大排列,第二个数是( )
分析与解答:假设A×1 =13×80% =C÷75%=D÷ =E÷1 =1,则A= , B = , C= ,D= ,E= ,所以把A、B、C、D、E按从小到大排列第二个就是C
3、如图,已知小正方形的边长是9厘米,求图中阴影部分的面积。
分析与解答:连接AC,S阴=S△ACG+ S△GCE- S△ACE而△ACE与△ACG等底等高, S△ACE=S△ACG,而S△ACE=S△ACH+S△HCE ,S△ACG=S△ACH+S△AHG 所以S△AHG=S△HCE,则阴影部分面积为小正方形面积的一半。即9×9× =40.5平方厘米.
4、快车与慢车从甲乙两地相对开出,如果慢车先开2小时,两车相遇时慢车超过中点24千米,若快乐先开出2小时,相遇时离中点72千米处,如果同时开出,4小时可以相遇,快车比慢车每小时多行多少千米?
分析与解答:设全程的一半为x,两次行驶中快车行驶的路程为:x+72+x-24=2x-48,慢车行驶的路程为:x+24+x-72=2x-48,快车比慢车多行驶的路程:2x+48-(2x-48)=96千米,把两次行驶可以看作两车同时出发行驶全程,则时间是4×2=8小时,那么快车比慢车每小时多行的千米数为96÷8=12千米。
5、有三堆棋子,每堆棋子数一样多,并且都只有黑白两色,第一堆的黑子数和第二堆里的白子数一样多,第三堆的黑子占全部黑子的 ,把这三堆棋子集中在一起,白子占全部棋子数的几分之几?
分析与解答:第三堆黑子占全部黑子的 ,那么,第一、二堆里的黑子占全部黑子的 ,又因为第一堆里黑子数和第二堆里的白子数相同,则第一、二堆里的黑子数正好等于第一堆棋子数,把每堆棋子数看作3,三堆棋子总.数则是9,黑子有5份,那么白子有9-5=4份,所以白子占全部棋子数的
6、早晨8时多钟,有甲、乙两辆汽车先后从化肥厂开往县城,两车的速度都是每小时行驶48千米,8时32分,甲车离化肥厂的距离是乙车离化肥厂距离的5倍,到了8时44分,甲车离化肥厂的距离恰好是乙车离化肥厂距离的2倍,那么甲车是8时几分由化肥厂开出的?
分析与解答:
如图:
上图可以看出
甲离化肥厂的距离与乙车离化肥厂的距离比是 ,8:44时两车和化肥厂的距离比是 ,又因两车速度相同 用 = □=3,8:44-8:32=12分钟,说明12分钟走了3份的路程,12÷3×(3+5)=32分钟,8:44-32分=8:12分,故甲车是8时12分由化肥厂开出的。
7、有60个不同的约数的最小 自然数是多少?
分析与解答:60=2×2×3×5=(1+1)×(1+2)×(2+1)×(4+1),这个自然数最小是29×32×5×7=5040
8、1!+2!+3!+……+100!的个位数字是( )
分析与解答:1!=1 2!=2 3!=6 4!=24 ,而5! 6! 7!……100!的个位数字全是0,1+2+6+4=13,所以1!+2!+3!+……+100!的个位数
这些可以吗?
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-05-04
小学五年级全科目课件教案习题汇总 语文 数学 英语

算数字(二)(五年级奥数题)
a,b,c是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是 (a+b+c)的多少倍?

算数字(二)(答案)

长方形体积

一个长方体的长、宽、高都是整数厘米,它的体积是2010立方厘米,那么它的长、宽、高和的最小可能值是多少厘米?

解答:6+9+37=52
【小结】2010=2×33×37 三个数相乘,当积一定时,三个数最为接近的时候和最小。所以这3 个数为6,9,37。6+9+37=52。所以这个长方体的长、宽、高的和最小为52。
体积计算(五年级奥数题) 体积
一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,

每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块,如下图.问这60块长方体表面积的和是多少平方米?

体积计算(答案)
解答:6+(2+3+4)×2=24(平方米)
【小结】原来的正方体有六个外表面,每个面的面积是1×1=1(平方米),无论后来锯成多少块,这六个外表面的6平方米总是被计入后来的小木块的表面积的.再考虑每锯一刀,就会得到两个1平方米的表面,1×2=2(平方米)
现在一共锯了:2+3+4=9(刀),
一共得到2×9=18(平方米)的表面.
因此,总的表面积为:6+(2+3+4)×2=24(平方米)。
这道题只要明白每锯一刀就会得到两个一平方米的表面,然后求出锯了多少刀,就可求出总的表面积。

自然数问题(五年级奥数题及答案) 自然数问题
求满足除以5余1,除以7余3,除以8余5的最小的自然数。

解答:与昨天的题类似,先求出满足"除以5余1"的数,有6,11,16,21,26,31,36,…
在上面的数中,再找满足"除以7余3"的数,可以找到31。同时满足"除以5余1"、"除以7余3"的数,彼此之间相差5×7=35的倍数,有31,66,101,136,171,206,…

在上面的数中,再找满足"除以8余5"的数,可以找到101。因为101<[5,7,8]=280,所以所求的最小自然数是101。
在这两题中,各有三个约束条件,我们先解除两个约束条件,求只满足一个约束条件的数,然后再逐步加上第二个、第三个约束条件,最终求出了满足全部三个约束条件的数。这种先放宽条件,再逐步增加条件的解题方法,叫做逐步约束法。

自然数问题
在10000以内,除以3余2,除以7余3,除以11余4的数有几个?

解答:满足"除以3余2"的数有5,8,11,14,17,20,23,…
再满足"除以7余3"的数有17,38,59,80,101,…
再满足"除以11余4"的数有59。
因为阳[3,7,11]=231,所以符合题意的数是以59为首项,公差是231的等差数列。(10000-59)÷231=43……8,所以在10000以内符合题意的数共有44个。

自然数问题
求满足除以6余3,除以8余5,除以9余6的最小自然数。

解答:如果给所求的自然数加3,所得数能同时被6,8,9整除,所以这个自然数是
[6,8,9]-3=72-3=69。

分房间(五年级奥数题及答案) 分房间
学校要安排66名新生住宿,小房间可以住4人,大房间可以住7人,需要多少间大、小房间,才

能正好将66名新生安排下?

解答:设需要大房间x间,小房间y间,则有7x+4y=66。
这个方程有两个未知数,我们没有学过它的解法,但由4y和66都是偶数,推知7x也是偶数,从而x是偶数。
当x=2时,由7×2+4y=66解得y=13,所以x=2,y=13是一个解。
因为当x增大4,y减小7时,7x增大28,4y减小28,所以对于方程的一个解x=2,y=13,当x增大4,y减小7时,仍然是方程的解,即x=2+4=6,y=13-7=6也是一个解。
所以本题安排2个大房间、13个小房间或6个大房间、6个小房间都可以。 解方程(五年级奥数题及答案) 解方程
求不定方程5x+3y=68的所有整数解。

解答:容易看出,当y=1时,x=(68-3×1)÷5=13,即x=13,y=1是一个解。
因为x=13,y=1是一个解,当x减小3,y增大5时,5x减少15,3y增大15,方程仍然成立,所以对于x=13,y=1,x每减小3,y每增大5,仍然是解。方程的所有整数解有5个:

只要找到不定方程的一个解,其余解可通过对这个解的加、减一定数值得到。限于我们学到的知识,寻找第一个解的方法更多的要依赖"拼凑本回答被提问者采纳
第2个回答  2014-05-04

我来也,亲,记得给好评呦~~~

相似回答