第8章 菲律宾Malam paya油田渐新统—中新统碳酸盐建隆定量地震储层描述

如题所述

Dietmar Neuhaus

目前地址:Nederlandse Aardolie Maatschappij,Assen,The Netherlands.

Shell Philippines Exploration BV,Alabang,Muntinlupa,Philippines

Jean Borgomano

Shell E & P Technology and Applied Research,Volmerlaan 8,Rijswijk,The Netherlands

Jean-Claude Jauffred

Shell E & P Technology and Applied Research,Volmerlaan 8,Rijswijk,The Netherlands

Christophe Mercadier

Shell E & P Technology and Applied

Research,Volmerlaan 8,Rijswijk,The Netherlands

Sam Olotu

目前地址:Shell Petroleum Development Company,Lagos,Nigeria.

Shell E & P Technology and Applied Research,Rijswijk,The Netherlands

Jurgen Grötsch

Shell Abu Dhabi BV,Abu Dhabi,United Arabian Emirates

摘要

菲律宾巴拉望岛近海海域的Malam paya碳酸盐建隆储层的复杂结构受不规则古地貌地形影响,这个古地貌地形是由渐新世和早中新世时期环礁构造逐渐生长形成的。对储层品质有着重要影响的其他因素包括频繁的大幅度的相对海平面升降、洋流和季风的方向等。原始沉积储层品质的分布叠加了后期成岩作用事件,成岩作用事件主要是由台地顶部的反复暴露和水下胶结作用产生的。复杂的上覆岩层和建隆地貌使原有地震资料产生固有噪声,这导致地震属性分布的不连续性。因此,使用地震层位和地震数据体解释来进行早期储层建模工作,并结合层序和旋回结构及储集岩类型概念来制定油田开发方案。

在天然气开发钻井之前,从进一步处理后的三维地震数据体中直接提取储层品质信息,对早期确立的储层模型进行校订。基于新的三维速度模型处理的三维叠前深度偏移,提高了地震资料的品质,用新处理的地震资料作为储层特征的定量地震分析、静态模拟、储层评价和优化天然气开发及石油评价井布井的基础。通过顶部储层反射振幅来识别储层顶部的高孔隙区,这有助于天然气开发井钻井避开低孔隙渗透区和易于泥浆漏失的裂缝带。应用一系列波阻抗反演来建立储层孔隙度体,从而在好的储层发育区布井。孔隙度体对于建立静态模型所需的准确的时深转换数据是必要的,这里时深转换使用的是从井资料中获得的纯碳酸盐岩线性孔隙度-速度关系。将从地震中得到的孔隙度体作为背景,结合三维地震相分析及基于井资料和类比得到的沉积模型,建立几个静态模型。5口天然气开发井的钻探结果证实了模拟出的南部Malampaya油藏潟湖部分储层品质分布的可靠性。在2001年10月打出第一口气井后,开始的早期油藏动态跟踪结果显示了,在碳酸盐建隆地区侧向上压力具有很好的连通性,这一点与早期模拟的油藏动态模型是一致的。

用来自不同的地震孔隙度体的资料建立了孔隙度和深度的关系,在Malampaya含油环状边缘地区,这些模拟的地震孔隙度体在确定储层品质的分布上被证明是有价值的,因此基于它们建立的孔隙度和深度的关系就成为水平评价井布井的基础。在2001年底钻的水平油田环境评价井MA-10井证实了预测的相的展布模式和建模中预测的储层属性。

基于新的定量地震储层描述技术,我们在Malampaya南部褶隆区和北部褶隆区的西部侧翼识别出了另外几个具有较好储层品质潜力的分布区。而前人认为以上两个地区由于早期普遍的海相胶结作用而只发育低孔隙度的储层。

前言

Malampaya油田位于菲律宾巴拉望岛水深850~1200m的近海区域,它于1989年发现,在水下约3000m的渐新统和中新统的两个碳酸盐建隆内含有650m厚的气柱和56m厚的油环(API 29.4)(图1)。自2001年10月以来,天然气通过水下管汇和五口斜井进行开采,而环状边缘油田则要通过水平井做进一步的评价。

Wolfart等(1986)和Wiedicke(1987)较早就描述了Nido灰岩。Nido组灰岩在巴拉望近海地区含有几个小的油气藏(Longman,1981)。然而,Malampaya建隆则在形成年代、地形、沉积相展布、储层结构和油气体积上与前者显示出非常明显的不同(Grötsch和Mercadier,1999)。

1991年,在Malampaya油田进行了25m×25m面元的三维地震数据采集。数据质量受表面海流和定位不确定性产生的拖缆漂移影响,产生了不均匀的偏移距分布和数据空白区。包含了高速叠瓦状碎屑岩槽道和海底地形起伏的复杂上覆岩层使地震反射产生了大的射线弯曲效应,这导致了非双曲线剩余时差的依次增大。上覆岩层内的高频衰减和剩余时差效应限定了Nido组的频谱,在储层内产生了大约20Hz的主频和大约80m的垂向分辨率。

1994年,在Malampaya三维地质勘探中进行了世界上第一次三维叠前偏移的工业应用。它有效地改进了构造定位,然而,也发现了振幅对于储层定量预测是不可靠的。以前的储层评价和最初的开发井目标评价是基于一个综合石油工程研究,这个研究是通过地震层位和地震数据体解释并结合层序和旋回结构及储集岩类型概念来完成的。三维速度模型被认为是提高现有地震资料品质的一个关键性的因素(Grötsch和Mercadier,1999)。

2000年,通过最新的叠前深度偏移技术和改进速度模型处理的地震资料来确定和优化开发井井位和进行储层评价。这明显减小了非双曲线性的剩余时差,提高了反射波的连续性,也增强了真振幅的保真程度。因此,地震资料的重新处理提高了三维地震资料的应用性,从而可以直接应用到储层描述和储层建模的工作中。本文阐述了此次研究工作中所取得的成果。

建隆生长历史和沉积模式

通过大量的Sr同位素和生物地层学资料,可以重建Malampaya和Camago建隆的构造史和生长史,通过将两个环礁构造作为量尺,能依次重建相对海平面变化史(Grötsch和Mercadier,1999)。在古新世—始新世时期,南中国海开始张开以后,在晚始新世—早中新世时期沉积了Nido灰岩(图2;Grötsch和Mercadier,1999)。Nido灰岩区域展布主要受下伏北东—南西走向延伸的、与断裂作用有关的基底断层控制。基底形态是复杂储层几何形态发育的主要控制因素(图3~图5)。晚始新世—早中新世时期沉积的原始台地碳酸盐岩超覆在不规则地貌之上。这个地貌是在MA4井钻遇的Malampaya构造的核部的Nido组沉积前的古隆起处形成的(图4,图6)。在南中国海漂移阶段,早渐新世时期在台地派生的斜坡沉积了首次进积阶段的沉积物,这可以在Malampaya和Camago的西南部地震资料中看到。中渐新世不整合标志着从进积到加积的转换。南中国海构造演化资料参见Holloway(1982)。

图1 巴拉望西北外滨SC-38区(block)Malapaya建隆Nido组顶部储层深度图。右下角的插图中标注了1000m水深等值线。图中标注了5口勘探和评价井(CA-1,MA-1至MA-4)和5口天然气开发井(MA-5至MA-9),油气界面在水下3332m处,自由水面在水下3388m 处。黑线表示地震剖面位置。

图2 年代地层学和岩石地层学,三维地震解释的主要地层、示意性岩性和主要沉积旋回及在建隆生长阶段的事件。

从晚渐新世到早中新世,由于相对海平面连续、快速、大幅度的升降,导致其东部边缘建隆加积及随后的退积(Grötsch和Mercadier,1999)。在这个主要生长阶段,沉积相展布受基底地形、相对海平面升降、洋流和盛行风方向控制。许多碳酸盐岩台地向海一侧边缘处于强的潮流和波浪作用位置,因此为生物礁生长提供了最有利的条件(Bosscher和Schlager,1993)。在Malam paya建隆上,大部分生物礁骨架和滑塌碎屑沿着南中国海开阔大洋的台地西部边缘展布。实际上,Malam paya油田没有井钻遇到生物礁带(reefzone),由于生物礁带可能只发育几十米的宽度,在地震上不能识别(Grötsch和Mercadier,1999)。然而,在MA-1井和MA-7井中见到的大量礁碎屑物表明这些井接近高生产率生物礁带。如M A-7井钻遇了Nido灰岩上部246m,取心14.8m,在这些取心中4.5m 属于礁碎屑体系,礁碎屑体系主要由破碎的滚圆的珊瑚和钙质海绵碎屑组成。钻孔成像和电测井解释表明,在MA-1井和MA-7井中30%~40%的井段都是由这样的礁碎屑物构成的。

高起伏的塔礁主要发育在Malampaya南部褶隆区的陡翼(图7)。Malampaya建隆向海一侧平行的强振幅同相轴和向深盆区变得模糊的同相轴被认为可能是礁碎屑沉积(图5,图7),其储层潜力至今没有探测资料。

Malampaya建隆在早Burdigalian阶(晚中新世)沉没,并被Pagasa组深海页岩覆盖。巴拉望半岛向东周期性抬升导致Malampaya向陆的东侧有粗粒物质通过浊流水道注入(图5)。

地震数据体分析

在生物礁带/开阔海斜坡和礁后/潟湖之间的界线也可以通过壳牌公司专有的软件进行地震相分类和地震数据体分区(图8)。这个方法用监控式神经网络方法和地震属性分析将地震数据体分为不同的地震相。神经网络技术是在地震数据体多边形上进行模拟演练,划分的这些多边形的地震数据体代表了将要对其进行划分沉积相类型的地震相特征。地震属性可以由软件计算出来,也可以由先前的数据体生成。生成的结果也是地震数据体,在这个数据体里划分的每一个多边形样本都被归为一种或其他可供选择的沉积相类型。第一次筛选中使用的属性(图8)是由振幅、连续性亮度、倾角和方位角组成。结果数据体中不同的样点被归类到各种地震相中,Malampaya地震数据体最初被划分为两个相:岩礁区域礁带/开阔海斜坡和礁后/潟湖相。这个结果可以在全区范围内对礁/开阔海斜坡和礁后/潟湖进行清楚地划分。这两个地震相的形状也被用于静态模拟模型中,特别是用来约束海相胶结作用的发育范围。

图3 Malampaya建隆构造史和沉积史综合剖面示意图(改自Grötsch和Mercadier,1999)。

图4 Malampaya建隆地质横剖面示意图和沉积相展布。GOC=气-油界面;FWL=自由水面。

图5 贯穿Malampaya油田的西—西北—东—东南向三维叠前深度偏移地震剖面。MA-1井和MA-2井是勘探和评价井,MA-5井是深化评价油田环境的天然气开发井。超覆在向海一侧的强振幅同相轴被解释为礁碎屑沉积,MA-2井东部强振幅单元被解释为在深海页岩内垂直沉积轴线切入的浊积水道。

图6 南北向三维叠前深度偏移地震剖面,图中显示MA-4井钻遇的Nido组沉积前的古隆起上的Nido层序底部MA-1井-MA6井之间始新统—渐新统台地碳酸盐岩的上超现象和MA-8井北部地层快速退积。详细的地层解释来自静态模型。

图7 Malampaya褶隆区南部斜坡塔礁。

一旦地震数据体被分成主要的相单元,则可能在第二次筛选中对每个相单元进一步划分为亚相。这里我们对Malampaya地区礁后-潟湖相进行进一步的划分。运用先前除了倾角和方位角之外的相似的属性组合,再次应用监控式神经网络方法。这可将潟湖相进一步划分成潜在的点礁相、向陆边缘相和向陆方向浅滩相。

从层序地层学的观点(Schlager,1999),可将Malampaya建隆的演化划分为3个主要的体系域:首先是海进体系域,反映了碳酸盐岩台地的形成和台地边缘的退积;之后为“空盆”(empty-bucket)体系域(早中新世),这个体系域相当于礁内的沉没和向海一侧礁的垂向加积;最后为淹没体系域(晚中新世),它标志着Nido灰岩台地的消亡。第三系沉积时期与断裂有关的浅海碳酸盐岩台地的逐渐消失也可以作为Aden海湾一个实例来描述(Borgomano和Peters,2004)。Malampay地震资料中标志性“平顶”特点的缺乏说明在Malam pay建隆中高位体系域和低位体系域不是很发育。

有利于天然气开发钻井的高孔隙度区域识别

Malampaya碳酸盐建隆被Pagasa组深海页岩超覆(图5)。Pagasa组显示了一个清楚的与压实有关的波阻抗深度趋势,但在局部受薄的粉砂岩-砂岩层影响。相比之下,碳酸盐岩波阻抗与孔隙度有很强的相关性(图9)。Pagasa组和Nido组波阻抗深度趋势交会图为从储层顶部振幅方面来预测建隆上部的储层孔隙度提供了工具(图10)。

在图11中可以看到Nido组顶部反射的不同特征。MA-1井西部,非常强的负向回弯(同相轴呈上凸形)(红色)代表了Nido组顶部(黄色层位线),这说明Nido组顶部存在低孔隙度储层。MA-5井东部和西部,Nido组顶部在同相轴负向回弯(红色)和正向回弯(黑色)之间的零振幅位置拾取,这个零振幅位置是通过MA-5井垂直地震剖面(VSP)来确定的。Nido组顶部的拾取在MA-5井和MA-2井之间的中部位置转变为黑色(正向回弯),这个位置是高孔隙度(>25%)储集段,该高孔隙储集段解释为Pagasa组的暴露位置。MA-2井钻到了储层顶部Nido组内部致密标志层(绿色与蓝色之间)。在没有考虑到Nido组顶部储层孔隙度和反射特征间关系的情况下,MA-2井和MA-5井之间的地震解释可以认为是一个人为现象。

图8 基于多属性数据体划分和地震相分析的神经网络,位置为图5中显示的地震测线。(A)第一遍滤波数据分割结果。黄色亮区代表礁带/开阔海斜坡,而紫红色代表礁后/潟湖。(B)第二遍滤波数据结果。礁后/潟湖进一步被分为潜在的点礁、向陆边缘和向陆浅滩(紫红色)。

图9 波阻抗与密度(补偿地层密度测井)孔隙度和孔隙充填关系。在含油和含水区,孔隙度分布是双峰的,这反映了低孔隙度的早渐新统台地碳酸盐岩和开阔海斜坡物质及高孔隙度的晚渐新统层序加积单元(见图2)。

图10 储层和上覆岩层波阻抗趋势与深度和储层孔隙度的关系。在Pagasa组页岩和低孔隙度(大约0~15%)Nido组灰岩之间的界面处可以观察到波阻抗呈正相关关系,用勘探地球物理协会的正常孔隙度值图版对比发现,在Nido组顶部的Nido组灰岩孔隙度值呈现了很强的负向的回弯现象(红点)。而上覆在高孔隙度(≥25%)Nido组灰岩上的Pagasa组岩层则可观察到微弱的正向回弯(黑点)。

图11 用在孔隙度体和静态模型中的时深拉伸的详细的地层解释。MA-1井西部非常强的负向上凸形(红色)代表Nido组(黄色层)顶部,这说明Nido组顶部存在低孔隙度储层。MA-5井东部和西部N ido组顶部在负向上凸形(红色)和正向下凹形(黑色)之间的零振幅位置拾取,这个零振幅位置是通过MA-5井VSP来确定的。Nido顶部的拾取在MA-5和MA-2之间的中部位置转变为黑色(波谷),这个位置是高孔隙度(>25%)储集段,该高孔隙储集段被解释为Pagasa组暴露的位置(注意这不是解释的人为现象)。MA-2井钻到了储层顶部Nido组内部致密标志层(绿色与蓝色层之间)。

基于VSP和合成地震记录分析,在Nido组顶部反射附近±10ms时窗内,最大负振幅是Pagasa组和Nido组之间分界面的最好表征。考虑到Malampaya建隆很大的垂直起伏,原始振幅经过深度校正之后可以除去Pagasa组波阻抗深度趋势叠加,最终振幅用在了两个方面。

第一,分析表明Nido组顶部孔隙度的高值区沿油田东部分布(图12),这个分布特征与Grötsch和Mercadier(1999)描述的油田成岩作用模拟结果一致,并类似于现代的生物礁的位置(Purser,1980)。因此,在礁后、潟湖和向陆一侧的浅滩(东部)位置早期地下水淋滤增加了储层基质的孔隙度。然而,早期海相胶结作用破坏礁前和向海一侧的生物礁(西部)大部分的孔隙度。新的地震分析表明在褶隆区东侧一些部位可能存在高孔隙度储层,而基于CA-1井的研究结果,前人认为褶隆区东侧储层性质差。

第二,用处理后的地震资料预测顶部储层潜在的泥浆漏失区域。在Malampaya油田,开启的裂缝和与之相关的泥浆漏失可以限制低孔隙层段,这个观测结果是基于测井资料(尤其是从地层微成像测井和偶极横波成像测井)、岩心资料、详细的泥浆漏失监测和地质力学构造模拟得出的。因此,Nido组顶部低孔隙区的识别避免了泥浆漏失进入储层,泥浆漏失能导致钻井问题,MA-9井的定位就避开了这样的预测到的漏失区域。

用波阻抗资料进行的三维时深转换

纯碳酸盐岩的地震速度(如Malampaya)主要受基质孔隙度的影响,而受孔隙充填物影响有限(图9)。因此,从三维地震资料中得到的静态储层模型的时深转换要求有三维的储层孔隙度资料。通过Jason Geoscience稀疏脉冲反演、Jason地质统计反演(Shanor等,2001)和PROMISE(壳牌公司专有的随机转换软件;见Leguijt,2001)软件,将新生成的Malampaya三维PSFM数据转换为波阻抗,之后转换为孔隙度。用地震反射资料(图6,图11)和波阻抗资料在油田范围内对18个层位进行了的解释,并基于平均层段孔隙度反演所得到的地震波速将18个层位转换为深度域。在井位处对深度网格进行校正后,用GEOCAP(壳牌基于属性的地质模拟工具)和DEPSIM(壳牌基于属性地质模拟工具)软件将经过深度拉伸的孔隙度体加入结果框架中(图13)。

图12 从振幅分析中获得的Nido组顶部储层孔隙度分布图(Nido组顶部反射附近±10ms内的最大负振幅),已经过深度校正。Nido组顶部高孔隙度区集中在油田的东部(白色封闭的折线内),该区域通过大气环境下的成岩作用而使储层品质提高。

地震反演、多储层实现以及体积测量

针对Nido组顶部不同的深度网格和孔隙度体的实现,反复运用前文所描述的流程可以得到如下6个静态模型方案:

方法1:平均条件下,Nido组顶部深度网格,Jason稀疏脉冲反演孔隙度体;

方法2:保守条件下,Nido组顶部深度网格(考虑层位的时间拾取以及上覆层速度误差(uncertainty),Jason Sparse Spike反演孔隙度体;

方法3:理想条件下,Nido组顶部深网格(考虑层位的时间拾取以及上覆层速度误差),Jason稀疏脉冲反演孔隙度体;

方法4:平均条件下,Nido组顶部深度网格,Jason Statmod平均孔隙度体,孔隙度体可从35个孔隙度体得到;

方法5:平均条件下,Nido组顶部深度网格,Jason Statmod保守条件下大孔隙度体,该孔隙度体是通过从平均孔隙度体中减去标准偏差非确定性的孔隙度体而得到;

方法6:平均条件下,Nido组顶部深度网格,Jason Statmod理想条件下孔隙度体,孔隙度体是通过从平均孔隙度立体中加上标准偏差非确定性的孔隙度体而建立的。

图13 通过静态储层模型的深度剖面。储层孔隙度是从PROMISE波阻抗反演中获得的。在储层单元范围内,薄层低孔隙度岩层是手工加上去的。这些岩层很薄,以至于不能通过三维地震来分辨,但是它们可以作为可对比的岩层在井之间进行识别。如果低孔隙度岩层内没有裂缝则可以形成遮挡,如果低孔隙度岩层内存在裂缝,则它们可以形成强渗透性岩层。GOC=气-油界面;OWC=油-水界面。

从这些主要的地震模型所产生的地层条件下的体积范围,与先前用Grötsch和Mercadier(1999)所描述的完全不同的方法所得到的估计结果是一致的。在输入到动态油藏模拟软件(MoReS)之前,在GEOCAP/DEPSIM中,通过添加低于地震分辨率的确定信息(如在井中所观察到的具有低、高渗透率的夹层,图13)、据孔-渗性所分出的储层岩石类型以及饱和度模拟,可以将静态模型作进一步的改进。

针对油环评价的水平钻井

假定气-油界面在水下3332m 处,而自由水界面在水下3388m 处,那么,从地震资料中得到的孔隙度体以及不同的静态储层模型可对油气分布实现可视化。图14中,在56m 厚的油柱内的石油分布可以通过绘制的孔隙度(=油环厚度×油环平均孔隙度)图显示出来。可以明显地看出,在所有的方案中,最大的原油体积分布在油田的北部。然而,在中部,石油的分布局限于基底隆起周围,且呈窄的环带状(图4)。这种组合显示有利于确定有利储层以及开发井靶区的选择。

结论

图14 Malampaya油环孔隙度方案。图的上部左侧为基础方案。绿色=低孔隙度值;红色=高孔隙度值。

1994~1996年期间,在Malampaya三维地震勘探中,综合了储层描述与建模工作在内的油田开发计划,突出了三维速度模型在地震资料处理与时-深转换中的重要性(Grötsch和Mercadier,1999)。针对1991年的Malampaya三维地震数据所作的新的三维叠前深度偏移,采用了最新的且改进的三维速度模型。重新处理的地震数据可用作定量地震分析的输入数据。这种定量地震分析手段常用于第二阶段的储层表征、静态建模、储量评估、天然气开发井及石油评价井方案优化。

用N ido组顶部的反射振幅来预测碳酸盐岩储层上部的基质孔隙度。与先前储层建模的结果一致,高孔隙度区主要出现在潟湖的中心区域。在潟湖的中心区域,大气淋滤作用改善了储层品质,在潟湖区东部礁的向陆一侧,这种储层品质得到了早期海相胶结作用保护,这些区域是天然气开发钻井的首选目标。相对来说,为了避免泥浆漏失的风险,应最大限度地避开易于形成裂缝的低孔隙带。这种泥浆漏失是潜在的钻井问题。

不同的波阻抗反演技术可以实现对储层孔隙度的认识。考虑到纯碳酸盐岩中孔隙度与速度的线性关系,对于静态的碳酸盐岩储层模型,孔隙度体是实现正确时深转换的基础。用孔隙度体作为背景,结合三维地震相分析以及基于井资料和类似物的沉积模型,可以建立几种静态模型。这几种静态模型可用于计算原地的烃类储量和作为在有利储层发育区布井的依据。天然气井的开发结果和早期的产能支持了我们在Malampaya油藏北部潟湖区模拟的储层展布的结果。

将从不同孔隙度体建立的孔隙度-高度模型对Malampaya油环中储层品质的展布进行了可视化建模,并成为水平评价井布井的基础。2001年底开钻的MA-10水平油环评价井证实了沉积相展布及储层品质的预测结果。

致谢

本文主要基于2000年和2001年在Malampay的天然气开发井和石油评价井钻井期间所做的工作。十分感谢Shell Philippines Exploration BV(SPEX)公司井下作业队,特别是G.Davies,J.Esquito,G.Loftus以及O.Tosun等人的帮助。地震数据处理、特殊地震资料研究以及储层建模等工作是在荷兰Rijswijk的Shell Exploration and Production Technology and Research(SEPTAR)公司进行的。此外,非常感谢A.van den Berg,T.Carlson,J.Leguijt,L.Mieles-de Pina,E.sims以及T.Tjan等人的帮助。Bruce Hart和Gregor Eberli两人的审阅对原稿有了很大的改进。我们十分感谢SPEX,Texaco Philippines以及PNOC-EC等公司允许文中资料的公开发表。

参考文献

Borgomano,J.R.F.,and J.Peters,2004,Outcrop and seismic expressions of coral reefs,carbonate platforms and adjacent deposits in the Tertiary of the Salalah Basin,south Oman,in G.P.Eberli,J.L.Masaferro,and J.F.Sarg,eds.,Seismic imaging of carbonate reservoirs and systems:AAPG Memoir 81,P.251-266.

Bosscher,H.,and W.Schlager,1993,Accumulation rates of carbonate platforms:Journal of Geology,v.101,p.345-355.

Grotsch,J.,and C,Mercadier,1999,integrated 3-D reservoir modeling based on 3-D seismic:The Tertiary Malampaya and Camago buildups,offshore Palawan,Philippines:AAPG Bulletin,v.83,p.1703-1728.

Holloway,N.H.,1982,North Palawan Block,Philippines-Its relation to the Asian mainland and roie in evolution of the South China Sea:AAPG Bulletin,v.66,p.1355-1383.

Leguijt,J.,2001,A promising approach to subsurface information integration:63rd EAGE Conference and Technical Exhibition,Amsterdam,The Netherlands.

Longman,M.W.,1981,Fracture porosity in reef talus of a Miocene pinnacle-reef reservoir,Nido-B field,the Philippines,in P.C.Roehla nd P.W.Choquette,eds.,Carbonate petroleum reservoirs:New York,Springer-Verlag,p.549-560.

Purser,B.H.,1980,Sedimentaation et diagenese des carbonates neritiques recents.Publication de 1'IEP,tome 1:Paris,Editions Technip,366p.

Schlager,W.,1999,Sequence stratigraphy of carbonate rocks:Leading Edge,v.18,p.901-907.

Shanor,G.,M.Rawanchaikul,M.Sams,R.M uggli,G.Tiley,and J.Ghulam,2001,A geostatisticali nversion to flow simulation workflow example:Makarem field,Oman:63rd EAGE Conference and Technical Exhibition,Amsterdam,The Netherlands.

Wiedicke,M.,1987,Stratigraphie,Mikrofazies und Diagenese tertiarer Karbonate aus dem Sudchinesischen Meer(Dangerous Grounds-Palawan,Philippines):Facies,v.16,p.195-302.

Wolfart,R.,P.Cepek,F.Grahmann,E.Kemper,and H.Proth,1986,Stratigraphy of Palawan Island,Philippines:Newsletters on Stratigraphy,v.16,p.19-48.

(邢凤存译;周东升,李秋芬校)

温馨提示:答案为网友推荐,仅供参考