第二题:
作差比较大小
令T(x)=3x²-5x-2-(x-2)
=3x²-6x
=3x(x-2)
令T(x)>0得 x>2或x<0
令T(x)<0得 0<x<2
令T(x)=0得 x=0或2
①当0<x<2时, T(x)<0
即 3x²-5x-2<x-2
得 f(x)=x-2, 为单调递增一次函数(只取0与2之间线段部分)
其最小值接近f(0)=-2,最大值接近f(2)=2
②当x=0或2时, T(x)=0, x-2=3x²-5x-2
得f(x)=0时f(x)=-2, x=2时,f(x)=0
为2个点
③当x<0或x>2时, T(x)>0
即 3x²-5x-2>x-2
f(x)=3x²-5x-2
在以上范围内,比较f(0)=-2和f(2)=0
得 函数最小值接近f(0)=-2
综上可得 f(x)的最小值是-2, 此时x=0
追问不能用x-2减去另一个函数吗
得出来的结果会是一样的吗
追答也可以,但结果是一样的。
追问好的,谢谢您
追答点击采纳给个赞吧,亲