计算机视觉中,目前有哪些经典的目标跟踪算法

如题所述

貌似有人把跟踪(tracking)和计算机视觉中的目标跟踪搞混了。前者更偏向数学,是对状态空间在时间上的变化进行建模,并对下一时刻的状态进行预测的算法。例如卡尔曼滤波,粒子滤波等。后者则偏向应用,给定视频中第一帧的某个物体的框,由算法给出后续帧中该物体的位置。最初是为了解决检测算法速度较慢的问题,后来慢慢自成一系。因为变成了应用问题,所以算法更加复杂,通常由好几个模块组成,其中也包括数学上的tracking算法,还有提取特征,在线分类器等步骤。在自成一系之后,目标跟踪实际上就变成了利用之前几帧的物体状态(旋转角度,尺度),对下一帧的物体检测进行约束(剪枝)的问题了。没错,它又变回物体检测算法了,但却人为地把首帧得到目标框的那步剥离出来。在各界都在努力建立end-to-end系统的时候,目标跟踪却只去研究一个子问题,选择性无视"第一帧的框是怎么来的"的问题。我想,目标跟踪的下一步应该是成为目标检测的一步,充分利用物体特性,建成一个视频中目标检测的大系统,而不是自成体系,只在自己的小圈子里做研究。答主并非是做目标跟踪方向研究的,但导师在博士期间是做的这个方向,因此也跟着有所涉猎。先匿了,如果有说的不对的地方,还请指正。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2018-07-29
第一章介绍运动的分类、计算机视觉领域中运动分析模型、计算机视觉领域运动检测和目标跟踪技术研究现状、计算机视觉领域中运动分析技术的难点等内容;
第二章介绍传统的运动检测和目标跟踪算法,包括背景差分法、帧间差分法、光流场评估算法等;
第三章介绍具有周期性运动特征的低速目标运动检测和跟踪算法,并以CCD测量系统为例介绍该算法的应用;
第四章介绍高速运动目标识别和跟踪算法,并以激光通信十信标光捕获和跟踪系统为例介绍该算法的应用;
第五章介绍具有复杂背景的目标运动检测过程中采用的光流场算法,包括正规化相关的特性及其改进光流场评估算法,并介绍改进光流场算法的具体应用;
第六章介绍互补投票法实现可信赖运动向量估计。本回答被网友采纳
第2个回答  2017-05-05
tld、compressive tracking、struck
相似回答