计算机视觉中,目前有哪些经典的目标跟踪算法

如题所述

比如TLD、CT、Struct这些效果不错的Tracker其实都不是单纯的Tracker了。09年的时候我记得比较流行的是Particle Filtering, 或者一些MeanShift/CamShift的变形,比如特征变了,比如对问题的假设变了。

后来突然出现一些tracking by detection的方法,之前的很多朋友就觉得这是耍流氓。比如TLD,严格的跟踪算法也许只是里面的Forward/Backward Opitcal Flow的部分,但是效果很Impressive,所以不管怎样,一下就火了。

之后所谓的跟踪就不再是一个传统的跟踪问题,而是一个综合的工程问题。online learning,random projection ,sparse learning的东西都加进来,大家其实到底是在做跟踪还是在做检测或者online learning,其实已经不重要,因为衡量的标准是你在某些public dataset上的精度。

但这些对实际的项目有没有帮助呢?

这是个很有意思的地方,在很多时候,我们之所以需要跟踪算法,是因为我们的检测算法很慢,跟踪很快。基本上当前排名前几的跟踪算法都很难用在这样的情况下,因为你实际的速度已经太慢了,比如TLD,CT,还有Struct,如果目标超过十个,基本上就炸了。况且还有些跟踪算法自己drift掉了也不知道,比如第一版本的CT是无法处理drift的问题的,TLD是可以的,究其原因还是因为检测算法比较鲁棒啊……

实际中我觉得速度极快,实现也简单的纯跟踪算法居然是NCC和Overlap。

NCC很简单,这个是对点进行的,对于区域也有很多变种,网上有一些相关的资源。

Overlap是我取的名字,一般用在视频里面,假如你的摄像头是静止的,背景建模之后出来的前景可以是一个一个的blob,对相邻两帧的blob检测是否Overlap就可以得到track。在一些真实场景下,这个算法是非常有效的。关于背景template的问题在真实的视频里面也是很好解决的
温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜