线性代数:证明向量组β,β+α1,β+α2,...β+αr线性无关

如题所述

为了方便我用a代表alpha,b代表beta
设有 k0b+k1(b+a1)+k2(b+a2)+……+kr(b+ar)=0
则有(k0+k1+k2……+kr)b+k1a1+k2a2+……+krar=0 (2)
左乘A有 (k0+k1+k2……+kr)Ab+k1Aa1+k2Aa2+……+krAar=0
其中Aai(i=1,2,3……r)=0,所以(k0+k1+k2……+kr)Ab=0
又因为Ab不等于0,则k0+k1+k2……+kr=0
所以(2)式有k1a1+k2a2+……+krar=0,因为a1,a2……ar线性无关,所以ki(i=1,2……r)=0
所以k0=0
所以k0b+k1(b+a1)+k2(b+a2)+……+kr(b+ar)=0,的系数全为0,向量组线性无关
温馨提示:答案为网友推荐,仅供参考
相似回答