阻容降压,限流电阻发热是什么原因?怎么解决?

有个问题想请教,阻容降压,可控硅控制灯光亮度,在关灯和亮度高时正常但是在亮度较低时,限流电阻R2会发热,且几分钟就会发烫,这时测量电阻上的电压是0.5v左右,电流0.03a,按理说不会发热的,你知道这是怎么回事吗?上图可理解为AB短路,C点控制导通角,R1,C1组成阻容降压,R2限流,当可控硅截止时给控制电路供电的通道,可控硅导通后,这个网络不起作用!
大家不要把控制电路想的太神奇了 ,里面其实就是整流,稳压给mcu供电,还有就是交流的直接通路,过零检测,mcu控制可控硅T1的触发时间.
这个问题基本以明确,
当可控硅截止时,交流电从0开始,向电容充电,当到一定时间,这个时间小于10ms,可控硅就导通,这个时间越长,可控硅的导通角越小,灯会越暗,电容上的电压越高,可控硅导通后电阻很小,电容上的电就会通过限流电阻,可控硅回到电容的另一端,从而在限流电阻上有较高的电压,
现在的问题是如何减小发热量,有人说正大电阻的功率,我认为增大功率仅仅是保护电阻不烧,然而真正的发热问题没有解决

最简单的电容降压直流供电电路及其等效电路如图1,C1为降压电容,一般为0.33~3.3uF。假设C1=2uF,其容抗XCL=1/(2PI*fC1)=1592。由于整流管的导通电阻只有几欧姆,稳压管VS的动态电阻为10欧姆左右,限流电阻R1及负载电阻RL一般为100~200,而滤波电容一般为100uF~1000uF,其容抗非常小,可以忽略。若用R代表除C1以外所有元器件的等效电阻,可以画出图的交流等效电路。同时满足了XC1>R的条件,所以可以画出电压向量由于R甚小于XC1,R上的压降VR也远小于C1上的压降,所以VC1与电源电压V近似相等,即VC1=V。根据电工原理可知:整流后的直流电流平均值Id,与交流电平均值I的关系为Id=V/XC1。若C1以uF为单位,则Id为毫安单位,对于22V,50赫兹交流电来说,可得到Id=0.62C1。2.电阻R1起到基波作用,又起到反冲作用,根据傅里叶基数计算浪涌的大小。
由此可以得出以下两个结论:(1)在使用电源变压器作整流电源时,当电路中各项参数确定以后,输出电压是恒定的,而输出电流Id则随负载增减而变化;(2)使用电容降压作整流电路时,由于Id=0.62C1,可以看出,Id与C1成正比,即C1确定以后,输出电流Id是恒定的,而输出直流电压却随负载电阻RL大小不同在一定范围内变化。RL越小输出电压越低,RL越大输出电压也越高。C1取值大小应根据负载电流来选择,比如负载电路需要9V工作电压,负载平均电流为75毫安,由于Id=0.62C1,可以算得C1=1.2uF。考虑到稳压管VD5的的损耗,C1可以取1.5uF,此时电源实际提供的电流为Id=93毫安。

稳压管的稳压值应等于负载电路的工作电压,其稳定电流的选择也非常重要。由于电容降压电源提供的的是恒定电流,近似为恒流源,因此一般不怕负载短路,但是当负载完全开路时,R1及VD5回路中将通过全部的93毫安电流,所以VD5的最大稳定电流应该取100毫安为宜。由于RL与VD5并联,在保证RL取用75毫安工作电流的同时,尚有18毫安电流通过VD5,所以其最小稳定电流不得大于18毫安,否则将失去稳压作用。
限流电阻取值不能太大,否则会增加电能损耗,同时也会增加C2的耐压要求。如果是R1=100欧姆,R1上的压降为9.3V,则损耗为0.86瓦,可以取100欧姆1瓦的电阻。
滤波电容一般取100微法到1000微法,但要注意其耐亚的选择.前已述及,负载电压为9V,R1上的压降为9.3V,总降压为18.3V,考虑到留有一定的余量,因此C2耐压取25V以上为好。

电路三,

   如图-1,C1 为降压电容器,D2 为半波整流二极管,D1 在市电的负半周时给C1 提供放电
回路,D3 是稳压二极管R1 为关断电源后C1 的电荷泄放电阻。在实际应用时常常采用的是图-2的所示的电路。当需要向负载提供较大的电流时,可采用图-3 所示的桥式整流电路。整流后未经稳压的直流电压一般会高于30 伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。
器件选择
  1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1 向负载提供的电流Io,实际上是流过C1 的充放电电流Ic。C1 容量越大,容抗Xc 越小,则流经C1 的充、放电电流越大。当负载电流Io 小于C1 的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax 小于Ic-Io 时易造成稳压管烧毁。
  2.为保证C1 可*工作,其耐压选择应大于两倍的电源电压。
  3.泄放电阻R1 的选择必须保证在要求的时间内泄放掉C1 上的电荷。
设计举例
  图-2 中,已知C1 为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。
  C1 在电路中的容抗Xc 为:
  Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K
  流过电容器C1 的充电电流(Ic)为:
Ic = U / Xc = 220 / 9.65 = 22mA。
  通常降压电容C1 的容量C 与负载电流Io 的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io 的单位是A。
  电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。

整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合.

电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电

电容降压的工作原理并不复杂.他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流.例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆.当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA.虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率.根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性.例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁.因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合.同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁.因为5W/65V的灯泡的工作电流也约为70mA.因此,电容降压实际上是利用容抗限流.而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色.
温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-09-28
在可控硅导通电阻大于R2时大部分电流是通过R2和电容C1流向灯泡的,因此会发热,可适当加大R2阻值改变发热程度.追问

可控硅导通后电阻肯定小于R2,在导通过程中我不晓得会不会比R2大,但是就算是会大的话,时间也是非常短的,以us计算,R2加大到500,效果一样,为什么会导通角越小,发热越严重呢??

第2个回答  2011-09-28
这个电路是保护可控硅的不是阻容降压,追问

谢谢你的回答,这个电路R2有保护可控硅的功能,但是当可控硅截止时,他的确是阻容降压电路,也许是合用了吧
关键是导通角越小,发热越严重,为什么??

追答

你没有发现那个电容有点问题
其实没有必要
就是一个反压吸收
不是它坏了

追问

如果没有那个电容,可控硅截止时间稍长(关灯后一段时间,大约不到1分钟),等控制电路中的电容放电完毕后,控制电路就会因为没有电而不工作.

追答

不是控制电路故障
那里面我也看不到

本回答被网友采纳
第3个回答  2011-10-05
izgMLO
第4个回答  2011-09-30
用个功率大点的。
相似回答