锂铁电池是什么原理

如题所述

摘录一段说明供参考: 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。
一般锂离子电池的电解质是液体的,后来开发出固态及凝胶型聚合物电解质,则称这种锂离子电池为锂聚合物电池,其性能优于液体电解质的锂离子电池。
磷酸铁锂电池的全名应是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。
采用LiFePO4材料作正极的意义
目前用作锂离子电池的正极材料主要有:LiCoO2、LiMn2O4、LiNiO2及LiFePO4。这些组成电池正极材料的金属元素中,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。
作为可充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。LiFePO4电池的结构与工作原理
LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。图1 LiFePO4电池内部结构
LiFePO4电池在充电时,正极中的锂离子Li+通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li+通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。LiFePO4电池主要性能
LiFePO4电池的标称电压是3.2 V、终止充电电压是3.6V、终止放电压是2.0V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。
磷酸铁锂动力电池主要性能列于表1。为了与其他可充电电池的相比较,也在表中列出其他种类可充电电池性能。这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。
磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。这里再介绍一种目前应用较广的小型标准圆柱形封装的磷酸铁锂动力电池的参数。其外廓尺寸:直径为18mm、高650mm(型号为18650),其参数性能如表2所示。典型的放电特性及寿命
一种型号为STL18650的磷酸铁锂动力电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图2中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电率范围内,输出电压大部分在2.7~3.2V范围内变化。这说明该电池有很好的放电特性。图2 STL18650的放电特性
容量为1000mAh的STL18650在不同的温度条件下(从-20~+40℃)的放电曲线如图3所示。如果在23℃时放电容量为100%,则在0℃时的放电容量降为78%,而在-20℃时降到65%,在+40℃放电时其放电容量略大于100%。
从图3中可看出,STL18650磷酸铁锂电池可以在-20℃下工作,但输出能量要降低35%左右。图3 STL18650在多温度条件下的放电曲线
STL18650的充放电循环寿命曲线如图4所示。其充放电循环的条件是:以1C充电率充电,以2C放电率放电,历经570次充放电循环。从图4的特性曲线可看出,在经过570次充放电循环,其放电容量未变,说明该电池有很高的寿命。图4 STL18650的充放电循环寿命曲线过放电到零电压试验
采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。
试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。
这试验说明该电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。磷酸铁锂电池的特点
通过上述介绍,LiFePO4电池可归纳下述特点。
1高效率输出:标准放电为2~5C、连续高电流放电可达10C,瞬间脉冲放电(10S)可达20C;
2 高温时性能良好:外部温度65℃时内部温度则高达95℃,电池放电结束时温度可达160℃,电池的结构安全、完好;
3 即使电池内部或外部受到伤害,电池不燃烧、不爆炸、安全性最好;
4 极好的循环寿命,经500次循环,其放电容量仍大于95%;
5 过放电到零伏也无损坏;
6 可快速充电;
7 低成本;
8 对环境无污染。磷酸铁锂动力电池的应用
由于磷酸铁锂动力电池具有上述特点,并且生产出各种不同容量的电池,很快得到广泛地应用。它主要应用领域有:
1 大型电动车辆:公交车、电动汽车、景点游览车及混合动力车等;
2 轻型电动车:电动自行车、高尔夫球车、小型平板电瓶车、铲车、清洁车、电动轮椅等;
3 电动工具:电钻、电锯、割草机等;
4 遥控汽车、船、飞机等玩具;
5 太阳能及风力发电的储能设备;
6 UPS及应急灯、警示灯及矿灯(安全性最好);
7 替代照相机中3V的一次性锂电池及9V的镍镉或镍氢可充电电池(尺寸完全相同);
8 小型医疗仪器设备及便携式仪器等。
这里举一个用磷酸铁锂动力电池替代铅酸电池的应用实例。采用36V/10Ah(360Wh)的铅酸电池,其重量12kg,充一次电可行走约50km,充电次数约100次,使用时间约1年。若采用磷酸铁锂动力电池,采用同样的360Wh能量(12个10Ah电池串联组成),其重量约4kg,充电一次可行走80km左右,充电次数可达1000次,使用寿命可达3~5年。虽然说磷酸铁锂动力电池的价格较铅酸电池高得多,但总的经济效果还是采用磷酸铁锂动力电池更好,并且在使用上更轻便。小型磷酸铁锂动力电池
小型磷酸铁锂动力电池是标准的,有圆柱形及长方形。如圆柱型的型号有18650、26650等。型号中前两位是表示直径,后两位或三位表示高度(单位为mm),即18650的尺寸的直径为18,高度为65。长方形的型号有103450R、183665R等。其前两位是电池的厚度、中间两位是电池的宽度,后两位是电池的长度(单位为mm)。电池生产工厂往往在型号前加三个英文字母作厂标,例如型号为×××18650。结语
磷酸铁锂动力电池是一种新型动力电池,由于其性能优良,受到各方面的重视。我国现在已有一些工厂生产磷酸铁锂电池正极材料及生产各种不同容量的磷酸铁锂动力电池。由于生产时间不长,规模还不大,造成供不应求的情况。不过,这种情况可望在2~3年内得到改变,磷酸铁锂动力电池将更便宜,并且其应用将更普遍。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-09-22
电能是现代社会生活的必需品,电能是最重要的二次能源,大部分的煤和石油制品作为一次能源用于发电。煤或油在燃烧过程中释放能量,加热蒸汽,推动电机发电。煤(或油)燃烧过程就是它和氧气发生化学变化的过程,所以“燃煤发电”实质是化学能�0�3机械能�0�3电能的过程,这种过程通常要靠火力发电厂的汽轮机和发电机来完成。另外一种把化学能直接转化为电能的装置,统称化学电池或化学电源。如收音机、手电筒、照相机上用的干电池,汽车发动机用的蓄电池,钟表上用的钮扣电池等都是小巧玲珑携带方便的日常用品。那末哪些化学体系可以设计成为实用的电池呢?

化学电池都与氧化还原反应有关。在18世纪末,人们把与氧化合的反应叫氧化反应,而把从氧化物中夺取氧的反应叫还原反应。到19世纪中叶,有了化合价的概念,人们把化合价升高的过程叫氧化,把化合价降低的过程叫还原。20世纪初建立了化合价的电子理论,人们把失电子的过程叫氧化,得电子的过程叫还原。例如:

这两个式子分别代表两个氧化还原半反应,两个半反应组合成一个氧化还原反应:

上式代表锌片和硫酸铜溶液发生置换反应生成硫酸锌和金属铜的离子反应方程式。反应过程中电子由Zn转移给Cu2+,Zn失去电子被氧化为Zn2+,Zn本身是还原剂,它使Cu2+还原为Cu,所以Cu2+本身则是氧化剂。有失电子的一方,就有得电子的一方,电子得与失一定同时发生,即氧化与还原一定同时发生。

凡涉及电子转移的反应都属于氧化还原反应,若这些电子能顺一定方向流动便成为电流。按图2—10所示,左边烧杯里盛硫酸锌溶液,并插入锌片,右边烧杯里盛硫酸铜溶液,并插入铜片;两个烧杯之间用“盐桥”相联。(盐桥是一个盛KCl饱和溶液胶冻的U形管,用以构成电子流的通路)。锌片和铜片之间用电线相联结,中间串联一个电压表(或电流表),电表指针的偏转证明上述装置确有电流产生,这就成为由锌电极(Zn—ZnSO4)和铜电极(Cu-CuSO4)组成的一个电池,简称锌-铜电池。在这个装置里,锌片并没有和CuSO4溶液相接触,但确实可以看到在锌极发生的是Zn片溶解生成 Zn2+,在铜极则有Cu2+还原成金属铜析出在铜片上,电子由锌极流向铜极,电流方向反之,即由铜极流向锌极,电流表指针向正方向偏转指明铜极为正极,锌极为负极。两个电极反应分别是:

正极:Cu2+ + 2e- �0�3 Cu

负极: Zn �0�3 Zn2+ + 2e-

若 Zn2+和 Cu2+的浓度都是 1.0 mol×L-1,用高阻抗伏特计测得两极电势差为1.1V,即该电池的电动势为1.1V。若用铁片和硫酸亚铁溶液代替上述锌电极,则组成铁-铜电池。当Fe2+和Cu2+浓度都是1.0 mol. L-1时,测得电动势为0.75V。若以Ag和AgNO3溶液(1.0 mol×L-1)代替铜电极,组成了锌-银电池,其电动势则为1.6V。与上述电池相关的氧化还原反应,电子流动方向和电池电动势(E)如下:

这几个反应是读者熟悉的金属置换反应,按图2-10所示原理可以装成经典的化学电池,在上个世纪它们曾是实用的化学电源。

电池的电动势决定于电极得失电子的能力和溶液的浓度。电极得失电子的能力,用“电极电势”表示,它是一类相对数据,表2-6列举了一些手册里记载的水溶液中的标准电极电势Eq。其中“标准”两字是指电极反应中的物质都处于标准状态,即溶液中离子浓度都是 lmol×L-1,气态物质的分压都是 100 kPa,温度为 298K(25℃)。以氢电极作为比较的标准,指定氢电极的标准电极电势为零:

2H+(1.0 mol×L-1)+ 2e-�0�3 H2(100kPa)

其他电极与之相比,如,表示铜电极电势比氢电极高0.34V;而= -0.76V,表示锌电极电势比氢电极低 0.76 V。由此可以求得铜电极电势比锌电极高1.10 V,即锌-铜电池的电动势为 1.10 V。

利用表2-6数据,还可以判别水溶液中氧化还原反应的方向。电极反应物质有氧化态与还原态,在书写反应方程式时,氧化态物质写在左边,得电子变为还原态,还原态物质写在右边。电极反应的Eq值越大,表示氧化态物质得电子能力越大,即氧化能力越大。

如表里左下方的氧化态物质F2,Cl2。,S2O82-,MnO4-等都是很强的氧化剂。反之Eq值越小,氧化态得电子能力越小或还原态失电子能力越大,亦即右上方还原态物质如 K,Na,Zn等都是强还原剂。由此可知表中左下方的氧化态物质可以和右上方的还原在物质起反应;反之右下方的还原衣物质不能和左上方氧化态物质起反应。例如 H+和 Fe可以起反应生成H2和Fe2+,而H+不能和Ag起反应,此即铁能和酸起置换反应放出H2,而银不能和酸起反应。同理,可以判断Cl2能氧化Br-或I-,但Fe3+只能使I-变为I2,而不能使Br-变为Br2。化学手册里有许多常见物质的有关Eq值可供参考。

任何两个电极反应都可组成一个氧化还原反应,理论上都可以设计成一个电池,但真要做成一个有实际应用价值的电池并非易事。目前我们最熟悉而又经常使用的莫过于锌-锰干电池和铅蓄电池。
第2个回答  2013-09-22
化学能转化为电能
相似回答