数学危机的第一次数学危机

如题所述

从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。这个学派兴旺的时期为公元前500年左右,它是一个唯心主义流派。他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。
毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。 不可通约性的发现引起第一次数学危机。有人说,这种性质是希帕索斯约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击,换句话说,如果希帕索斯发现的无理数真的存在,那么古希腊的数学理论体系就完全崩溃了。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。
同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。
回顾以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。比如泰勒斯预测日食,利用影子距离计算金字塔高度,测量船只离岸距离等等,都是属于计算技术范围的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,所以也就一直停留在“算学”阶段。而希腊数学则走向了完全不同的道路,形成了欧几里得《几何原本》的公理体系与亚里士多德的逻辑体系。 古典逻辑与欧氏几何学
亚里士多德的方法论对于数学方法的影响是巨大的,他指出了正确的定义原理。亚里士多德继承自己老师柏拉图的观念,把定义与存在区分,由某些属性来定义的东西可能未必存在(如正九面体)。另外,定义必须用已存在的定义过的东西来定义,所以必定有些最原始的定义,如点、直线等。而证明存在的方法需要规定和限制。
亚里士多德还指出公理的必要性,因为这是演绎推理的出发点。他区别了公理和公设,认为公理是一切科学所公有的真理,而公设则只是某一门学科特有的最基本的原理。他把逻辑规律(矛盾律、排中律等)也列为公理。
亚里士多德对逻辑推理过程进行深入研究,得出三段论法,并把它表达成一个公理系统,这是最早的公理系统。他关于逻辑的研究不仅使逻辑形成一个独立学科,而且对数学证明的发展也有良好的影响。
亚里士多德对于离散与连续的矛盾有一定阐述。对于潜在的“无穷大”和实在的“无穷大”加以区别。他认为正整数是潜在无穷的,因为任何整数加上1以后总能得到一个新的数。但是他认为所谓“无穷集合”是不存在的。他认为空间是潜在无穷的,时间在延长上是潜在无穷的,在细分上也是潜在无穷的。
欧几里得的《几何原本》对数学发展的作用无须在此多谈。不过应该指出,欧几里得的贡献在于他有史以来第一次总结了以往希腊人的数学知识,构成一个标准化的演绎体系。这对数学乃至哲学、自然科学的影响一直延续到十九世纪。牛顿的《自然哲学的数学原理》和斯宾诺莎的《伦理学》等都采用了欧几里得《几何原本》的体例。
欧几里得的平面几何学为《几何原本》的最初四篇与第六篇。其中有七个原始定义,五个公理和五个公设。他规定了存在的证明依赖于构造。
《几何原本》在西方世界成为仅次于《圣经》而流传最广的书籍。它一直是几何学的标准著作。但是它还存在许多缺点并不断受到批评,比如对于点、线、面的定义是不严格的:“点是没有部分的对象”,“线是没有宽度的长度(线指曲线)”,“面是只有长度和宽度的对象”。显然,这些定义是不能起逻辑推理的作用。特别是直线、平面的定义更是从直观来解释的(“直线是同其中各点看齐的线”)。
另外,他的公理五是“整体大于部分”,没有涉及无穷量的问题。在他的证明中,原来的公理也不够用,须加上新的公理。特别是平行公设是否可由其他公理、公设推出更是人所瞩目的问题。尽管如此,近代数学的体系特点在其中已经基本上形成了。 非欧几何学的诞生
欧几里得的《几何原本》是第一次数学危机的产物。尽管它有种种缺点和毛病,毕竟两千多年来一直是大家公认的典范。尤其是许多哲学家,把欧几里得几何学摆在绝对几何学的地位。十八世纪时,大部分人都认为欧几里得几何是物质空间中图形性质的正确理想化。特别是康德认为关于空间的原理是先验综合判断,物质世界必然是欧几里得式的,欧几里得几何是唯一的、必然的、完美的。
既然是完美的,大家希望公理、公设简单明白、直截了当。其他的公理和公设都满足了上面的这个条件,唯独平行公设不够简明,像是一条定理。
欧几里得的平行公设是:每当一条直线与另外两条直线相交,在它一侧做成的两个同侧内角的和小于两直角时,这另外两条直线就在同侧内角和小于两直角的那一侧相交。
在《几何原本》中,证明前28个命题并没有用到这个公设,这很自然引起人们考虑:这条啰哩啰嗦的公设是否可由其他的公理和公设推出,也就是说,平行公设可能是多余的。
之后的二千多年,许许多多人曾试图证明这点,有些人开始以为成功了,但是经过仔细检查发现:所有的证明都使用了一些其他的假设,而这些假设又可以从平行公设推出来,所以他们只不过得到一些和平行公设等价的命题罢了。
到了十八世纪,有人开始想用反证法来证明,即假设平行公设不成立,企图由此得出矛盾。他们得出了一些推论,比如“有两条线在无穷远点处相交,而在交点处这两条线有公垂线”等等。在他们看来,这些结论不合情理,因此不可能真实。但是这些推论的含义不清楚,也很难说是导出矛盾,所以不能说由此证明了平行公设。
从旧的欧几里得几何观念到新几何观念的确立,需要在某种程度上解放思想。
首先,要能从二千年来证明平行公设的失败过程中看出这个证明是办不到的事,并且这种不可能性是可以加以证实的;其次,要选取与平行公设相矛盾的其他公设,也能建立逻辑上没有矛盾的几何。这主要是罗巴切夫斯基的开创性工作。
要认识到欧几里得几何不一定是物质空间的几何学,欧几里得几何学只是许多可能的几何学中的一种。而几何学要从由直觉、经验来检验的空间科学要变成一门纯粹数学,也就是说,它的存在性只由无矛盾性来决定。虽说象兰伯特等人已有这些思想苗头,但是真正把几何学变成这样一门纯粹数学的是希尔伯特。
这个过程是漫长的,其中最主要的一步是罗巴切夫斯基和波耶分别独立地创立非欧几何学,尤其是它们所考虑的无矛盾性是历史上的独创。后人把罗氏几何的无矛盾性隐含地变成欧氏几何无矛盾性的问题。这种利用“模型”和证明“相对无矛盾性”的思想一直贯穿到以后的数学基础的研究中。而且这种把非欧几何归结到大家一贯相信的欧氏几何,也使得大家在接受非欧几何方面起到重要作用。
应该指出,非欧几何为广大数学界接受还是经过几番艰苦斗争的。首先要证明第五公设的否定并不会导致矛盾,只有这样才能说新几何学成立,才能说明第五公设独立于别的公理公设,这是一个起码的要求。
当时证明的方法是证明“相对无矛盾性”。因为当时大家都承认欧几里得几何学没有矛盾,如果能把非欧几何学用欧几里得几何学来解释而且解释得通,也就变得没有矛盾。而这就要把非欧几何中的点、直线、平面、角、平行等翻译成欧几里得几何学中相应的东西,公理和定理也可用相应欧几里得几何学的公理和定理来解释,这种解释叫做非欧几何学的欧氏模型。
对于罗巴切夫斯基几何学,最著名的欧氏模型有意大利数学家贝特拉米于1869年提出的常负曲率曲面模型;德国数学家克莱因于1871年提出的射影平面模型和彭加勒在1882年提出的用自守函数解释的单位圆内部模型。这些模型的确证实了非欧几何的相对无矛盾性,而且有的可以推广到更一般非欧几何,即黎曼创立的椭圆几何学,另外还可以推广到高维空间上。
因此,从十九世纪六十年代末到八十年代初,大部分数学家接受了非欧几何学。尽管有的人还坚持欧几里得几何学的独特性,但是许多人明确指出非欧几何学和欧氏几何学平起平坐的时代已经到来。当然也有少数顽固派,如数理逻辑的缔造者弗雷格,至死不肯承认非欧几何学,不过这已无关大局了。
非欧几何学的创建对数学的震动很大。数学家开始关心几何学的基础问题,从十九世纪八十年代起,几何学的公理化成为大家关注的目标,并由此产生了希尔伯特的新公理化运动。

温馨提示:答案为网友推荐,仅供参考
相似回答