设函数F(x)=lnx+x2-2ax+a2,a属于R 若函数F(x)在[1/2,2]上存在单调递增区间,试求实数a的取值范围
解析:∵函数F(x)=lnx+x^2-2ax+a^2,其定义域为(0,+∞)
要使函数F(x)在[1/2,2]上存在单调递增区间
(1)若函数f(x)在定义域内单调增,则在[1/2,2]上存在单调递增区间;
F’(x)=1/x+2x-2a=(2x^2-2ax+1)/x
∵x>0==>2x^2-2ax+1>0
⊿=4a^2-8<0==>-√2<a<√2
即只要-√2<a<√2,则F’(x)>0, 函数f(x)在定义域内单调增
(2)令F’(x)=(2x^2-2ax+1)/x=0
∵x>0==>2x^2-2ax+1=0
X1=[a-√(a^2-2)]/2,X2=[a+√(a^2-2)]/2
若x1,x2存在,则须使a<=-√2或a>=√2
∴a=(2x^2+1)/(2x) (x>0)
令a’=(4x^2-2)/(4x^2)=0==>x=√2/2
当x=√2/2时,函数a取极小值√2
F’’(x)=2-1/x^2
当a>=√2时,x1>0,x2>0
F’’(x1<0,F’’(x2))>0
即函数F(x)在x1处取极大值;即函数F(x)在x2处取极小值;
X1=[a-√(a^2-2)]/2>1/2==>a<3/2
X2=[a+√(a^2-2)]/2<2==>a<9/4
取二者并,即当√2<=a<9/4,满足在[1/2,2]上存在单调递增区间
(3)当a<=0时,x>0==>2x^2-2ax+1>=1>0,即f’(x)>0
∴函数f(x)在定义域内单调增
综上,当a<9/4时,函数F(x) 满足在[1/2,2]上存在单调递增区间
温馨提示:答案为网友推荐,仅供参考