线性代数?

已知二次型f(X1,X2,X3)=(k+1)X1^2+(k-1)X2^2+(k-2)X3^2正定,则数k的取值范围是什么?

线性代数总结 一、课程特点 特点一:知识点比较细碎。 </b>如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。特点二:知识点间的联系性很强。这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。复习线代时,要做到“融会贯通”。“融会”——设法找到不同知识点之间的内在相通之处;“贯通”——掌握前后知识点之间的顺承关系。 二、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和 阶两种类型;主要方法是应用行列式的性质及按行\列展开定理化为上下三角行列式求解。 对于抽象行列式的求值,考点不在求行列式,而在于 、 、 等的相关性质,及性质 (其中 为矩阵 的特征值)。 矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、 、 、 的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。 三、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。解线性方程组可以看作是出发点和目标。线性方程组(一般式)还具有两种形式:(Ⅰ)矩阵形式 ,其中 , , (Ⅱ)向量形式 ,其中 , 向量就这样被引入了。1)齐次线性方程组与线性相关、无关的联系齐次线性方程组 可以直接看出一定有解,因为当 时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。 齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式 中的 只能全为0才能使等式成立,而当齐次线性方程组有非零解时,存在不全为0的 使上式成立;但向量部分中判断向量组 是否线性相关\无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关。可以设想线性相关\无关的概念就是为了更好地讨论线性方程组问题而提出的。 2)齐次线性方程组的解与秩和极大无关组的联系同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”,向量组 组成的矩阵 有 说明向量组的极大线性无关组中有 个向量,即 线性无关,也即等式 只有零解。所以,经过 “秩 → 线性相关\无关 → 线性方程组解的判定” 的逻辑链条,由 就可以判定齐次方程组 只有零解。当 时, 的列向量组 线性相关,此时齐次线性方程组 有非零解,且齐次线性方程组 的解向量可以通过 个线性无关的解向量(基础解系)线性表示。 3)非齐次线性方程组与线性表示的联系非齐次线性方程组 是否有解对应于向量 是否可由 的列向量组 线性表示,即使等式 成立的一组数 就是非齐次线性方程组 的解。当非齐次线性方程组 满足 时,它有唯一解。这一点也正好印证了一个重要定理:“若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示方法唯一”。 性质1.对于方阵 有: 方阵 可逆ó ó 的行\列向量组均线性无关ó ó 可由克莱姆法则判断有唯一解, 而 仅有零解 对于一般矩阵 则有: ó 的列向量组线性无关 ó 仅有零解, 有唯一解(如果有解) 性质2.齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关,而非齐次线性方程组 是否有解对应于 是否可以由 的列向量组线性表出。 以上两条性质可视为是将线性相关、行列式、秩、线性方程组几部分知识联系在一起的桥梁。 应记住的一些性质与结论 </b>1.向量组线性相关的有关结论:1)向量组 线性相关ó向量组中至少存在一个向量可由其余 个向量线性表出。 2)向量组线性无关ó向量组中没有一个向量可由其余的向量线性表出。 3)若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示法唯一。 2.向量组线性表示与等价的有关结论:1) 一个线性无关的向量组不可能由一个所含向量个数比它少的向量组线性表示。2) 如果向量组 可由向量组 线性表示,则有 3) 等价的向量组具有相同的秩,但不一定有相同个数的向量;4) 任何一个向量组都与它的极大线性无关组等价。3.常见的线性无关组:1) 齐次线性方程组的一个基础解系;2) 、 、 这样的单位向量组; 3) 不同特征值对应的特征向量。4.关于秩的一些结论:1) ; 2) ; 3) ; 4) ; 5)若有 、 满足 ,则 ; 6)若 是可逆矩阵则有 ; 7)若 可逆则有 ; 8) 。 4.线性方程组的解:1) 非齐次线性方程组 有唯一解则对应齐次方程组 仅有零解; 2)若 有无穷多解则 有非零解; 3)若 有两个不同的解则 有非零解; 4)若 是 矩阵而 则 一定有解,而且当 时有唯一解,当 时有无穷多解; 5)若 则 没有解或有唯一解。 四、特征值与特征向量 相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下:1.特征值和特征向量的定义及计算方法就是记牢一系列公式如 、 、 和 。 常用到下列性质:若 阶矩阵 有 个特征值 ,则有 ; 若矩阵 有特征值 ,则 、 、 、 、 、 分别有特征值 、 、 、 、 、 ,且对应特征向量等于 所对应的特征向量; 2.相似矩阵及其性质定义式为 ,此时满足 、 、 ,并且 、 有相同的特征值。 需要区分矩阵的相似、等价与合同:矩阵 与矩阵 等价( )的定义式是 ,其中 、 为可逆矩阵,此时矩阵 可通过初等变换化为矩阵 ,并有 ;当 中的 、 互逆时就变成了矩阵相似( )的定义式,即有 ;矩阵合同的定义是 ,其中 为可逆矩阵。 由以上定义可看出等价、合同、相似三者之间的关系:若 与 合同或相似则 与 必等价,反之不成立;合同与等价之间没有必然联系。 3.矩阵可相似对角化的条件包括两个充要条件和两个充分条件。充要条件1是 阶矩阵 有 个线性无关的特征向量;充要条件2是 的任意 重特征根对应有 个线性无关的特征向量;充分条件1是 有 个互不相同的特征值;充分条件2是 为实对称矩阵。 4.实对称矩阵及其相似对角化阶实对称矩阵 必可正交相似于对角阵 ,即有正交矩阵 使得 ,而且正交矩阵 由 对应的 个正交的单位特征向量组成。 可以认为讨论矩阵的相似对角化是为了方便求矩阵的幂:直接相乘来求 比较困难;但如果有矩阵 使得 满足 (对角矩阵)的话就简单多了,因为此时 而对角阵 的幂 就等于 ,代入上式即得 。引入特征值和特征向量的概念是为了方便讨论矩阵的相似对角化。因为,不但判断矩阵的相似对角化时要用到特征值和特征向量,而且 中的 、 也分别是由 的特征向量和特征值决定的。 五、二次型 本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵 存在正交矩阵 使得 可以相似对角化”,其过程就是上一章相似对角化在 为实对称矩阵时的应用。 本章知识要点如下:1.二次型及其矩阵表示。2.用正交变换化二次型为标准型。3.正负定二次型的判断与证明。</B></B></B>
这样可以么?追问

请你不要来捣乱可以吗?你知道你复制这些过来,这道题就被百度设置成已有答复,真正可以解答的人再打开来看的几率就减小了。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-12-28
答案是k>2,根据sylvester定理,顺序主子式均大于0本回答被提问者采纳
相似回答