为什么收敛数列一定单调递增?

如题所述

原因如下:

当p>1时,p级数收敛;当1≥p>0时,p级数发散,形如1+1/2^p+1/3^p+…+1/n^p+…(p>0)的级数称为p级数。

当p=1时,得到著名的调和级数:1+1/2+1/3+…+1/n+…。p级数是重要的正项级数,它是用来判断其它正项级数敛散性的重要级数。

交错p级数:形如1-1/2^p+1/3^p-1/4^p+…+(-1)^(n-1)*1/n^p+…(p>0)的级数称为交错p级数,交错p级数是重要的交错级数。

数列收敛的极限存在准则:

数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε。柯西极限存在准则又叫柯西审敛原理,给出了数列收敛的充分必要条件。

这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,在数轴上一切具有足够大号码的点Xn中,任意两点间的距离小于ε。

在直接使用单调有界原理证明递推数列的过程中,要验证它的有界性和单调性,通常需要先计算几项来观察可能的变化规律,然后再进行验证。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜