如图,函数y= f(x)的斜渐近线怎样求?

如题所述

函数的斜渐近线求法:

(1)当x趋向于正无穷时,lim[f(x)/x]=a ,且a不等于0

而且当x趋向于正无穷lim[f(x)-ax]=b,

那么有斜渐近线y=ax+b

(2)当x趋向于负无穷时,重复上述过程,找出是否存在另一条斜渐近。

若当x趋向于无穷时,函数y=f(x)无限接近一条固定直线y=Ax+B(函数y=f(x)与直线y=Ax+B的垂直距离PN无限小,且limPN=0),当然也即PM=f(x)-(Ax+B)的极限为零,则称y=Ax+B为函数y=f(x)的斜渐近线。

扩展资料:

注意事项

1、斜渐近线是与函数图像无限接近,但永不相交的一条(或几条)直线。

2、当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,为了方便,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

参考资料来源:百度百科-斜渐近线

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜