奥数题:25个点不过黑点连线

如题所述

这个题目是没的解的,给点阵每个点加上坐标
(0,0) ( 0,1 ) (0,2)(0,3)(0,4)
(1,0)(1,1)(1,2)(1,3)(1,4)
(2,0)(2,1)(2,2)(2,3)(2,4)
(3,0)(3,1)(3,2)(3,3) (3 ,4)
(4,0)(4,1)(4,2) (4,3)(4,4)
定义点(x,y),x+y为奇数时为奇点,x+y为偶数时为偶点,按以上定义则对于任意总数为偶数的点阵,奇数点和偶点的数量相同;对于任意总数为奇数的点阵则偶点比奇点多一个(因为任意两行或两列中奇点和偶点总数相同,奇数点阵会多出一行/列),所以25个点里有13个偶点、12个奇点,偶点比奇点多1个。观察不难发现任意一个奇点周围四个全是偶点,任意一个偶点周围四个全是奇点,因为不能连斜线,所以连起来的一条线上必然是奇偶相间,即奇点-偶点-奇点。。。。这样的规律,这样一条线上奇点和偶点的数量要么相同要么相差1。
再看你的题目,去掉的第二点为奇点,这样偶点就比奇点多两个,所以不管你怎么连总会多出一个偶点。
总结一下,如果点总数为奇数,去掉一个奇数点后不管怎样都连不出来。
温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-08-21
证明:无论怎么连线一定是A-B-A-B-A.......B-A,或者B-A-B-A......B-A-B,
以A 开始以A结束A也只比B多一个,现在有13个A11个B,不可能有解的。本回答被网友采纳
第2个回答  2015-09-14

追答

所以,不可能做到的

相似回答