求脂质体制备工艺的流程图

空白脂质体的制备 将EPC、CH及SA按处方比例混和,无水乙醚溶解,得到类脂溶液。将其置于茄形烧瓶中,加入数粒直径为3~4mm的玻璃珠,减压蒸发,除去有机溶剂,得到一层均匀半透明的磷脂膜,于真空干燥箱内真空干燥24h。然后加入硫酸铵溶液以洗脱磷脂膜。所得空白脂质体通过3μm的微孔滤膜整粒。整粒后的脂质体取5mL装入透析袋中,用150mmol·L-1NaCl溶液室温下透析,每次使用透析介质(20~25倍体积)80~100mL,共透析3次,约24h。透析的目的是为了除去脂质体外部的硫酸铵,使脂质体膜内外形成硫酸根离子的梯度(即脂质体内部为高浓度的硫酸根,脂质体膜外为低浓度的硫酸根)。

可以简化一点的 最好有图 ppt用的 [email protected] 发过之后再追加100分

1  被动载药法

    脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。

  1.1  薄膜分散法

  此法最初由Bangham 等报道,是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。这种方法对水溶性药物可获得较高的包封率,但是脂质体粒径在0.2~5 μm 之间,可通过超声波仪处理或者通过挤压使脂质体通过固定粒径的聚碳酸酯膜,在一定程度上降低脂质体的粒径。

  1.2 超声分散法

  将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。

  1.3  冷冻干燥法

  脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。1978 年Vanleberghe 等首次报道采用冷冻干燥法提高脂质体的贮存稳定性。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。

    

  脂质体冷冻干燥包括预冻、初步干燥及二次干燥 3 个过程。冻干脂质体可直接作为固体剂型,如喷雾剂使用,也可用水或其它溶剂化重建成脂质体混悬液使用,但预冻、干燥和复水等过程均不利于脂质体结构和功能的稳定。如在冻干前加入适宜的冻干保护剂,采用适当的工艺,则可大大减轻甚至消除冻干过程对脂质体的破坏,复水后脂质体的形态、粒径及包封率等均无显著变化。单糖、二糖、寡聚糖、多糖、多元醇及其他水溶性高分子物质都可以用做脂质体冻干保护剂,其中二糖是研究最多也是最有效的,常用的有海藻糖、麦芽糖、蔗糖及乳糖。本法适于热敏型药物前体脂质体的制备,但成本较高。陈建明等[1]以大豆磷脂为膜材,以甘露醇为冻干保护剂,采用冻干法制备了维生素A前体脂质体,复水化后平均粒径为 0.615 1 μm ,包封率 98.5%。林中方等[2]采用冻干法制备了鬼臼毒素体脂质体,复水化后平均粒径为 1.451 μm ,包封率 72.3%,但是这种方法仍然存在着不足之处,例如脂质体复水化后粒径分布不够均匀。

  1.4  冻融法

  此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。何文等[3]分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。通过研究发现,冻融法制备的脂质体的包封率最高,但是粒径最大。反复冻融可以提高脂质体的包封率,王健松[4]制备了阿奇霉素脂质体,实验发现,经3次重复冻融后,阿奇霉素脂质体的包封率从61.4% 增加到78%,但是当冻融次数增加到4次,包封率变化很小。该制备方法适于较大量的生产,尤其对不稳定的药物最适合。

  1.5  复乳法

  此法第1步将磷脂溶于有机溶剂,加入待包封药物的溶液,乳化得到W/O 初乳,第2步将初乳加入到10倍体积的水中混合,乳化得到W/O/W乳液,然后在一定温度下去除有机溶剂即可得到脂质体。Kim[5]用乳化法制得脂质体的包封率比较高,但是粒径较大。Tomoko等[6]通过研究发现,第2步乳化过程和有机溶剂的去除过程的温度对脂质体的粒径有比较大的影响,较低的温度有利于减小脂质体的粒径,通过控制温度可以制得粒径为400 nm,包封率达到 90%的脂质体。

  1.6  注入法

  将类脂质和脂溶性药物溶于有机溶剂中(油相),然后把油相均速注射到水相(含水溶性药物)中,搅拌挥尽有机溶剂,再乳匀或超声得到脂质体。根据溶剂的不同可分为乙醇注入法和乙醚注入法。

    

  乙醇注入法避免了使用有机溶剂,丁丽燕[5]用乙醇法制备了司帕沙星脂质体,通过研究发现慢速注入可制得具有较高包封率的脂质体,其包封率为47%。

    

  乙醚注入法制备的脂质体大多为单室脂质体,粒径绝大多数在2 μm以下,操作过程中温度比较低(40℃),因此,该方法适用于在乙醚中有较好溶解度和对热不稳定药物,同时通过调节乙醚中不同磷脂的浓度,可以得到不同粒径且粒径分布均匀的脂质体混悬液[8]。

  1.7 反相蒸发法

  最初由Szoka提出,一般的制法是将磷脂等膜材溶于有机溶剂中,短时超声振荡,直至形成稳定的W/O乳液,然后减压蒸发除掉有机溶剂,达到胶态后,滴加缓冲液,旋转蒸发使器壁上的凝胶脱落,然后在减压下继续蒸发,制得水性混悬液,除去未包入的药物,即得大单层脂质体脂质体。此法可包裹较大的水容积,一般适用于包封水溶性药物、大分子生物活性物质等。

  1.8  超临界法

  传统的脂质体制备方法,必须要使用氯仿,乙醚、甲醇等有机溶剂,这对环境和人体都是有害的。超临界二氧化碳是一种无毒、惰性且对环境无害的反应介质。严宾等[9]用超临界法制备了头孢唑林钠脂质体,将一定量的卵磷脂溶解于乙醇中配得卵磷酯乙醇溶液,与头孢唑啉钠溶液一起放入加入高压釜中,将高压釜放入恒温水浴中,通入CO2。在其超临界态下孵化30min,制备脂质体。采用超临界CO2法制备的包封率高、粒径小,稳定性增强。

  2  主动载药

    对于两亲性药物,如某些弱酸弱碱,其油水分配系数介质pH和离子强度的影响较大,用被动载药法制得的脂质体包封率低。

    

  主动载药是利用两亲性的药物,能以电中性的形式跨越脂质双层,但其电离形式却不能跨越的原理来实现的。通过形成脂质体膜内、外水相的pH梯度差异,使脂质体外水相的药物自发地向脂质体内部聚集。

    

  此法通常用脂质体包封酸性缓冲盐,然后用碱把外水相调成中性,建立脂质体内外的pH 梯度。药物在外水相的pH环境下以亲脂性的中性形式存在,能够透过脂质体双层膜。而在脂质体内水相中药物被质子化转为离子形式,不能再通过脂质体双层回到外水相,因而被包封在脂质体中。主动载药法广义上就是指pH 梯度法。人们把其细分为:(1)pH梯度法;(2)硫酸铵梯度法;(3)醋酸钙梯度法。其中硫酸铵梯度法和醋酸钙梯度法只是pH梯度法的两种特殊形式。

  2.1  pH梯度法 

  pH梯度法通过调节脂质体内外水相的pH值,形成一定的pH梯度差,弱酸或弱碱药物则顺着pH梯度,以分子形式跨越磷脂膜而使以离子形式被包封在内水相中。

    

  赵妍等[10]用以pH梯度法制备硫酸长春新碱脂质体,其包封率大于85%,而被动载药法制备的硫酸长春新碱脂质体的包封率最高为14.4%。Jia等[11]用pH梯度法内水相pH 0.5%外水相pH4.0制备了卡苯达唑脂质体,包封率高于95%。杜松等[12]用pH梯度法制备盐酸去氢骆驼蓬碱脂质体,包封率大于80%,研究表明,虽然制得的脂质体没有加强药物的抗癌活性,但是大大降低了其毒副作用。

    跨膜pH梯度是影响包封率的最主要因素,通常pH梯度越大,载入脂质体内的药物越多,包封率也越高。制备伊立替康脂质体时[13],当pH梯度≥3.7时包封率达97%以上,当pH梯度<2时,包封率不到5%;Mamyer等[14]在研究中发现通过跨膜pH梯度法制备多柔比星脂质体,pH梯度达到3.5时包封率达98%,降低内水相缓冲液的pH可增大pH梯度,但会加剧磷脂的水解,降低脂质体的稳定性。

    

  此外,药物自身性质如油水分配系数、膜渗透性等亦可影响包封率。Quan等[15]用pH梯度法制备多巴胺脂质体,由于多巴胺亲水性较强,无法直接克服能量壁垒穿过脂质双分子层进入内水相,但与拉沙洛西(lasalocid)结合形成复合物可暴露出亲脂性表面,即可穿过脂质膜进入脂质体,包封率提高到85%。氧化苦参碱水溶性较大,脂溶性较弱,因此采用pH梯度法制备脂质体包封率只有50%[16]。

 

希望您能够采纳!!

追问

大哥 看见我问题里的那段了么? 我要把那个做成流程图~~~

追答

- -

参考资料:无!

温馨提示:答案为网友推荐,仅供参考