函数f(x)在点x0处的某个邻域有定义,则极限f(x0+2h)-f(x0+h)/h存在不是函数f(x)在点x0处可导的充分条件的原因
如:设函数f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是?
A.lim(x趋近于0) [f(a+2h)-f(a+h)]/h存在 B.lim(x趋近于0) [f(a+h)-f(a-h)]/2h存在
C.lim(x趋近于0) [f(a)-f(a-h)]/h存在 D为D.lim(h趋近于无穷) h[f(a+1/h)-f(a)]
我知道函数连续不一定可导,但可导必连续,话说,我问的问题涉及到领域的问题,能否在讲讲领域是如何判断出来的,我很想知道,谢谢啦
谢谢,具体想问的是补充问题,能给出较详细的解释吗?