I = â«â« (1 + xy)/(1 + x² + y²) dxdyï¼D = { (xï¼y) | x² + y² ⤠1ï¼x ⥠0 }
{ x = rcosθï¼{ y = rsinθ
I = â«(- Ï/2âÏ/2) dθ â«(0â1) (1 + r²sinθcosθ)/(1 + r²) • rdr
= â«(- Ï/2âÏ/2) dθ • â«(0â1) [r/(1 + r²) + r³/(1 + r²) • sinθcosθ] dr
= â«(- Ï/2âÏ/2) (1/2)ln(r² + 1) + sinθcosθ • [r²/2 - (1/2)ln(r² + 1)] |(0â1) dθ
= â«(- Ï/2âÏ/2) (1/2)ln(2) + [1/2 - (1/2)ln(2)] • sinθcosθ dθ
= (1/2)ln(2) • (Ï/2 + Ï/2) + [1/2 - (1/2)ln(2)] • 0
= (1/2)ln(2) • Ï
= (Ï/2)ln(2)
温馨提示:答案为网友推荐,仅供参考