一元一次方程解法为去分母、去括号、移项、合并同类项、系数变为1。
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。
历史溯源:
一元一次方程最早见于约公元前1600年的古埃及时期。约公元前1650年,古埃及的莱因德纸草书中记载了第24题,题目为:“一个量,加上它的等于19,求这个量。”解决了形为的一次方程,即单假设法解决问题。
公元前1世纪左右,中国人在《九章算术》中首次加入了负数,并提出了正负数的运算法则,解决了移项问题。在“盈不足”一章中提出了盈不足术。但该方法并没有被用来解决一元一次方程。在11~13世纪时传入阿拉伯地区,并被称为“契丹算法”。
9世纪,阿拉伯数学家花拉子米在《对消与还原》中给出了解方程的简单可行的基本方法,即“还原”和“对消”。但没有采用字母符号。体现了明显的方程的思想。