n+1个n维向量必线性相关是什么?

如题所述

具体如下:

以n+1个n维向量作为列向量构成的矩阵的秩不超过n。

(矩阵的秩不超过其行数和列数中小的那个)。

所以 r(A)<=n。

所以 A 的列向量组的秩 <= n。

即 n+1个n维向量 的秩 <=n。

故线性相关。


线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立 [1]  (linearly independent),反之称为线性相关(linearly dependent)。

例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。

定理

1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。

2、一个向量线性相关的充分条件是它是一个零向量。

3、两个向量a、b共线的充要条件是a、b线性相关。

4、三个向量a、b、c共面的充要条件是a、b、c线性相关。

5、n+1个n维向量总是线性相关。【个数大于维数必相关】。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜