计算概率的公式A(n,m)和C(n,m)如何计算?

比如这个图片中的公式

A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每个数连乘。

C(n,m)=A(n,m)/A(m,m)。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。

扩展资料:

排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择。

则排列数

由阶乘的定义可知

上下合并可得 

参考资料:百度百科——排列

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-02-26

A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每个数连乘。

C(n,m)=A(n,m)/A(m,m)。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。

排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择。

扩展资料

排列可分选排列与全排列两种,在从n个不同元素取出m个不同元素的排列种,当m<n时,这个排列称为选排列;当m=n时,这个排列称为全排列。n个元素的全排列的个数记为Pn。

就是说,n个不同元素全部取出的排列数,等于正整数1到n的连乘积。正整数一到n的连乘积,叫做n的阶乘,用n!表示。我们规定0!=1。

一个从n个元素中取m个元素的排列可以看成这n个元素组成的集合A的一个m元有序子集,于是A的m元有序子集的个数。

本回答被网友采纳
第2个回答  推荐于2017-09-17
输入公式确实不便,我认为n在下面m在上吧。那么m<n
A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每个数连乘。
C(n,m)=A(n,m)/A(m,m).

你给图那个等于4。本回答被提问者采纳
相似回答