宇宙论的宇宙学原理

如题所述

作为开始,我们要介绍一些形成任何科学的宇宙理论基础的原理。 自古以来,人类就不愿放弃我们在宇宙里起着中心作用的想法。先是提出了地心宇宙观,放弃地心宇宙观以后又提出了日心宇宙观。直到20世纪人们才认识到,我们的太阳不过是处在一个普普通通星系边沿的一颗普普通通的恒星。我们的星系是一个大星系团外部的一个松散星系群的一员。甚至这个星系团(即室女座星系团)同我们在宇宙中其他地方看到的真正巨大的星系团相比,也只不过是一个毫不出众的角色而已。我们在宇宙中的地位可以说是平凡到了极点。
这种用最大的光学望远镜观测得来的知识,给宇宙学者留下了一个棘手的难题。我们的观测是从宇宙中的一个特殊位置进行的,而建立一个宇宙学理论却要求一般地了解整个宇宙中物质的性质和分布。宇宙学者需要摆脱这种令人遗憾的限制,他们的办法是假设一个普适原理,这个原理要求宇宙在我们附近的部分同极遥远的区域相比没有什么差别。有很强的哲学理由来为这种普适原理辩护。举个例来说,物理学规律在全宇宙中应当是同样的;因为若不如此,实验就会不可重复,而我们的物理规律就会不成其为规律了。一个更强的要求是,大宇宙应当尽可能地简单。用可以容许的最简单模型来解释现象,这是物理学前进的自然方式。不过,宇宙学原理也有一些不同的说法。
1543年,哥白尼提出地球可能不是宇宙的中心。哥白尼学说的逻辑推广是应将我们的银河系从任何优越的空间位置挪走。于是我们得到了近代宇宙论的重要基石,即哥白尼宇宙学原理。这个原理说,我们在宇宙空间中并不处于特别优越的位置。人们研究了天文底片上的大量星系以后发现,它们的出现频率在不同方向上是颇为相似的。这一迹象表明,宇宙是局域各向同性的,从地球上看来,宇宙在不同方向上显示出相同的面貌。(从中心看一个球是各向同性的,而看一个鸡蛋就不然了。)哥白尼原理要求,宇宙在空间任何一点周围都是各向同性的。矩的反射应足以验证,点点各向同性要求宇宙在空间上也必须均匀。因为,如果宇宙是非均匀的,那么它只能在某些特定位置上显示出各向同性。 大爆炸宇宙论认为:宇宙是由一个致密炽热的奇点于150亿年前一次大爆炸后膨胀形成的。1929年,美国天文学家哈勃提出星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。宇宙并非永恒存在而是从虚无创生的思想在西方文化中可以说是根深蒂固。虽然希腊哲学家曾经考虑过永恒宇宙的可能性,但是,所有西方主要的宗教一直坚持认为宇宙是上帝在过去某个特定时刻创造的。像历史学家一样,宇宙学家意识到开启未来的钥匙在于过去。
早在1929年,埃德温·哈勃作出了一个具有里程碑意义的发现,即不管你往哪个方向看,远处的星系正急速地远离我们而去。换言之,宇宙正在不断膨胀。这意味着,在早先星体相互之间更加靠近。事实上,似乎在大约100亿至200亿年之前的某一时刻,它们刚好在同一地方,所以哈勃的发现暗示存在一个叫做大爆炸的时刻,当时宇宙无限紧密。
1950年前后,伽莫夫第一个建立了热大爆炸的观念。这个创生宇宙的大爆炸不是习见于地球上发生在一个确定的点,然后向四周的空气传播开去的那种爆炸,而是一种在各处同时发生,从一开始就充满整个空间的那种爆炸,爆炸中每一个粒子都离开其他每一个粒子飞奔。事实上应该理解为空间的急剧膨胀。整个空间可以指的是整个无限的宇宙,或者指的是一个就像球面一样能弯曲地回到原来位置的有限宇宙。根据大爆炸宇宙论,甚早期的宇宙是一大片由微观粒子构成的均匀气体,温度极高,密度极大,且以很大的速率膨胀着。这些气体在热平衡下有均匀的温度。这统一的温度是当时宇宙状态的重要标志,因而称宇宙温度。气体的绝热膨胀将使温度降低,使得原子核、原子乃至恒星系统得以相继出现。 从1948年伽莫夫建立热大爆炸的观念以来,通过几十年的努力,宇宙学家们为我们勾画出这样一部宇宙历史:
大爆炸开始时:
150-200亿年前,极小体积,极高密度,极高温度。
大爆炸后:
10-43秒 宇宙从量子背景出现。
10-35秒 同一场分解为强力、电弱力和引力。
10-5秒 10万亿度,质子和中子形成。
0.01秒 1000亿度,光子、电子、中微子为主,质子中子仅占10亿分之一,热平衡态,体系急剧膨胀,温度和密度不断下降。
0.1秒后 300亿度,中子质子比从1.0下降到0.61。
1秒后 100亿度,中微子向外逃逸,正负电子湮没反应出现,核力尚不足束缚中子和质子。
13.8秒后 30亿度,氘、氦类稳定原子核(化学元素)形成。
35分钟后 3亿度,核过程停止,尚不能形成中性原子。
大爆炸后30万年后 3000度,化学结合作用使中性原子形成,宇宙主要成分为气态物质,并逐步在自引力作用下凝聚成密度较高的气体云块,直至恒星和恒星系统。 大爆炸理论揭示了宇宙演化的壮阔景象。宇宙膨胀大约开始于200亿年前。这个初始时刻及其以前的条件纯属猜测的范畴。虽然我们将在下面几章中碰到这个问题,通常的理论对此是闭口不谈的。早期宇宙非常炽热、非常致密,同时也许还是很不规则的。这种不规则性和各向异性逐渐消失了。在大爆炸后数分钟内出现了一些核反应,宇宙中几乎所有的氦就是在那时合成的。随着膨胀的进行,宇宙逐渐变冷,就像热空气边膨胀边冷却一样。宇宙背景辐射就是这个早期时代的遗迹。人们一直恰当地把它称为原始火球的剩余辐射。根据一种宇宙演化的方案,随着宇宙中物质的冷却,它终将凝聚为原星系。原星系分裂为恒星并聚在一起成为范围广阔的巨大集团。随着头几代恒星的诞生和死亡,逐渐合成了碳、氧、硅、铁这类重元素。当恒星演化为红巨星时,它们便抛出凝结为尘粒的物质。从气体和尘埃云中形成了新一代的恒星。至少在一个这样的星云里,冷的尘埃坍缩成一个环绕恒星的薄盘。尘粒通过合并彼此附着并累积成较大的物体,这些物体在彼此引力的吸引下长大,形成从小行星到大行星的形形色色天体,这些天体就构成了太阳系。
大爆炸理论引导我们追溯整个宇宙的演化,从时间的头几毫秒到地球的形成和生命的出现,再走向可能是无限的未来。在考察这种演化的细节之前,我们将在第二章中讨论科学宇宙论的历史渊源。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-11-13
相似回答