证明:f(x)=√(x^2 1) - ax (这应该是原式的正确书写)
则其导函数f'(x)=x /√(x^2 1) - a=[x-a√(x^2 1)] / √(x^2 1)
因为,在区间[0, &)上,f'(x)的分母=√(x^2 1)>0恒成立,
分子=x-a√(x^2 1),因为,√(x^2 1)>x,所以a√(x^2 1)>ax,
所以,-a√(x^2 1)<-ax,所以x-a√(x^2 1)<x-ax=x(1-a),
又因为,x≧0,a≧1,所以x(1-a)≤0,即x-a√(x^2 1)<0,
所以,f'(x)的分母与分子异号,则分式的值为负,
即,当x≧0,a≧1时,恒有f'(x)<0,所以,此时,f(x)为单调递减函数。
望能帮助读者释疑!
温馨提示:答案为网友推荐,仅供参考