地球上的物质哪里来的?

地球上的物质哪里来的?主要是重元素从哪里来的,是不是黑洞爆炸留下的?我个人认为是.谁能解释一下吗?
经过红巨星的阶段后,恒星内留下了各种“核灰烬”:碳、氧、氖、镁、硅、氩、钙、钛、铁……成为今天的物质世界和一切生命中不可缺少的元素。
谁能解释一下是怎么留下的这个是关键问题?
4楼的说:
一直到铁元素聚合形成为止。此后不再有新的能源,聚合成比铁更重的元素则吸收热量,而不是释放热量。
那么铁之后的元素又是从哪里来的??????
谢谢各位!!
我今天无意找到了答案证明了我先前的想法,虽然行星不是黑洞爆炸而来,不过也是黑洞喷射出来的.
http://hi.baidu.com/%CE%DE%D6%D0%C9%FD%D3%D02008/blog/item/fc0a3332e215f2ff1a4cffa0.html

现在最权威的说法是:在太阳系形成初期,99%以上的物质向中心聚合成为太阳,周围还有部分散在的物质碎片围绕着太阳旋转,经过很长一段时间的碰撞和引力作用,散在的碎片逐渐聚合成了九大行星,但那时的地球只是一团混沌的物质,又经过了几十万年,物质逐渐冷却凝固,形成了地球的初步形态,再经过几十万年,由于地球的引力作用,由地球内部化学反应所产生的气体喷出后被保存在地球周围,形成了大气层,并由氢气和氧气化合成了水,再然后经过太阳的能量辐射,地球本身的电场、磁场作用和适宜的生存环境,由水中产生了有机物,也就是一切生命的祖先……

地球是太阳系的一个成员。太阳系家属由太阳、水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星以及50万颗小行星、卫星和彗星组成。太阳是太阳系的家长。太阳系在形成之前,是一片由炽热气体组成的星云,当气体冷却引起收缩时,使得星云旋转起来。由于重力的作用,气体和风吹草动心收缩,旋转速度加快,星云变成扁的圆盘状。我们知道,现代家庭中洗衣服使用的洗衣机,有一个脱水机,把湿衣服放进去,脱水机快速旋转起来,衣服内的水分就会被“抛”出去,湿衣服变成了干衣服。把水抛出去的力,就是水滴在做圆周运动时产生的离开中心的力,叫离心力。同样道理,当旋转的星云边收缩边旋转,周围物质的离心力超过了中心对它的引力时,就分离了一个圆环来。就这样,一个又一个圆环产生。最后,中心部分变成太阳,周围的圆环变成了行星,其中一颗就是地球,地球是在四五十亿年前产生的。

这是一个科学的假说,是18世纪德国哲学家康德和法国数学家拉普拉斯提出的学说,人们称它为康德——拉普拉斯星云说。到了1944年德国物理学家魏扎克又发展了这个学说。

有关太阳系起源和地球形成的研究还在继续,不断完善。尽管如此,地球是我们人类的母亲,哺育着我们成长。我们人类应该认识它,了解它,即使有朝一日,人类迁居到其他星球上去,也将永远怀念它。

世界殿堂建在核废墟上

《大自然探索》2003/1 2003-03-06傅承启

你相信吗?世界的殿堂竟然建筑在核反应的“废墟”上。无论是高山流水,还是森林大海,无论是恒星和星系,还是太阳与地球,都是核反应的产物。从根本意义上讲,甚至你、我和其他所有生命也都是核反应的产物。当然,你无需担心——因为这种“废墟”绝大多数都是没有放射性的,相反,正是它们造就了我们的生命和整个灿烂的物质世界。为什么这样说呢?一切得从恒星的诞生谈起。
从云到星
蓝蓝的天上白云飘。其实,恒星之间到处“漂浮”着规模比白云大得多的“云”,它们由各种原子、分子和尘埃组成,称为“星际云”。其中的星际分子常常集结成团,构成了“分子云”。分子云通常都很大,直径一般可达上百光年,却又非常稀薄,比实验室内的真空还要稀薄得多,但是由于体积庞大,所以包含的物质还是很多,其质量总和可以达到太阳质量的几十万倍到上千万倍。分子云非常寒冷,温度通常只有10~20K(开,绝对温标的计量单位,与摄氏温标相差273.15K,即摄氏零度(冰点)等于273.15K,或者绝对零度等于-273.15度。天文学上的温度都是指绝对温度)。所以,分子云是一种既大又冷、在光学波段上看不见的天体,只能在红外或射电波段上看到它们,然而,它们却是光辉灿烂的恒星的孕育地。
分子云内部很不均匀,有的地方浓密,有的地方稀薄。在浓密的地方,物质聚集得更多,引力也更大。在引力作用下,星际分子向分子云的浓密中心部分下落,分子云开始收缩。由于分子云很冷很稀,云内部热运动产生的压力很小,所以星际分子的下落就像自由落体一样,几乎毫无阻力。
也许你见过流星:在地球的引力作用下,路过地球附近的太空碎片落入地球大气,与大气分子发生碰撞,其中一部分动能转化成热能并发光。星际分子在下落过程中也发生类似的情况,引力势能转变为动能,下落速度越来越快,并与其他分子、原子发生碰撞,使它们的动能转化为热能。起初,分子云的温度并不变化,因为它们非常稀薄,热量几乎都散发到星际空间中去了。但是分子云各个部分的收缩,使得原来巨大的分子云开始碎裂,变成规模较小的分子云。这种碎裂过程会不断地进行下去,直至分子云碎成原恒星云的大小,才不再碎裂。由于此时原恒星云的密度已经很大,热量的散发受阻,所以云内部的温度开始增高。
由于引力仍然大于内部的压力,所以原恒星云还会继续收缩。密度越来越高,热量的散发越来越困难,云内部的温度增加也越来越快。终于,云中心的温度达到这样的数值——内部分子热运动产生的斥力与引力达到平衡,这时云中心不再收缩,形成了一个云核。但是,云核外部的压力与引力并未达到平衡,物质还在继续下落,这使云核表面的压强不断增加,结果会打破云核已经达到的平衡,使之再度收缩,温度继续增加。当云核温度达到2000K时,氢分子发生离解,即一个氢分子分解成两个氢原子。分子的离解要吸收大量热量,使得云核内部压力骤降,于是云核崩陷为体积更小、密度更大的内核,我们称之为“原恒星”。
在原恒星阶段,能量来自于引力能。随着外层物质的继续下落,表面压强不断增大,原恒星继续收缩,中心温度继续增加。当温度达到700万K时,氢聚变为氦的核反应突然点燃,于是,一颗新的恒星诞生了。从此,恒星开始了它稳定而漫长的生涯,氢氦聚变能取代引力能成为恒星能量的来源,这个阶段的恒星称为“主序星”。
从分子云收缩到恒星诞生的时间,大约为100万年到上千万年,质量越大的恒星形成的时间越短。这是因为质量大意味着物质多、引力大,原来的加速度也大,物质的自由下落快,下落时间短,分子云很快就坍缩为一个原恒星。由于这个阶段相对于恒星的主序阶段来说十分短暂,所以我们把刚到达主序的恒星又称为“零龄主序星”,作为一颗恒星的起算年龄。这有点像婴儿的年龄从刚诞生起算那样,我们略去了婴儿在母体中孕育的时间。
宇宙的“核熔炉”
如果把天上的恒星标点在一张图上,图的横坐标是恒星的温度或颜色,纵坐标是它们的亮度或光度,就会发现绝大部分恒星都处在从左上到右下的一条带上,这条带称为“主序”,处在主序上的恒星称为“主序星”,这张图我们称为“赫罗图”。它得名于两位天文学家赫茨普龙和罗素姓名的头一个字,他们在上世纪初首先使用了这张图。
从主序的左上角到右下角,恒星的温度由高到低,质量由大到小,光度由亮到暗,颜色从蓝白到红色。太阳处在主序的中下部分,呈黄橙色。处在主序的恒星都依靠氢氦聚变反应释放的能量维持自己发光。因为这种反应非常缓慢,所以恒星的一生主要是在这个阶段度过的。
氢氦聚变反应有很高的产能效率,每一次反应都会释放近27兆电子伏的能量,比其他核反应高得多。如煤的燃烧,一个碳原子和两个氧原子生成二氧化碳的过程产生的热能,只有前者的600万分之一。太阳每秒钟发出近400亿亿亿焦耳的能量,假如太阳的能量全部来自氢氦聚变,那么它每秒钟需消耗掉6亿吨氢核;太阳一共具有2000亿亿亿吨物质,如果全部是氢,就可维持太阳今天的状态1000亿年。实际上,当主序星核心部分的氢消耗殆尽后,恒星将离开主序而变成红巨星,红巨星核心部分的质量只占恒星总质量的百分之十几。另外,恒星也不全是由氢元素组成,因此,太阳的寿命要短得多,大约只有100亿~120亿年。
如果恒星内部的温度更高一些,高于比如1600万K,那么能量的主要来源将是碳氦氧的循环反应——4个氢核聚变成1个氦核,并释放约25兆电子伏的能量。质量是太阳两倍以上的恒星,主要依靠这种反应提供能量。
太阳和恒星的能量来源曾经引起许多科学家的好奇。是什么东西的燃烧在长久稳定地维持它们发光呢?每克煤燃烧释放的热量为6.5卡,石油为10卡。假如太阳是依靠燃烧煤或石油提供能量,那么只要4~7年时间太阳就将用完自己的燃料,这显然是不可能的。在发现核能源之前,科学家也曾计算过引力收缩产生的能量。
以钟摆为例,钟摆不停地摆动,就是摆的引力势能与动能相互转变的过程。钟摆垂直时,摆的动能最大,势能为零;摆到最高处时,势能最大,动能为零。由于摆与空气的摩擦,摆最后会停下来,势能全部转化为热能,散发到周围的空气里。
对于太阳,假如是引力在维持太阳发光,它从现在的大小收缩到一个点所提供的能量也只够太阳用2000年。上世纪30年代,英国天文学家爱丁顿提出,根据爱因斯坦质能关系可以解释恒星的能量来源。1938年,美国天文学家贝蒂指出氢氦聚变反应和碳氮循环核反应提供了恒星的能量,从而解决了恒星的能源问题,贝蒂也因此获得了1967年的诺贝尔物理学奖。
恒星在主序阶段停留的时间占恒星寿命的80%。恒星质量越大,停留的时间越短,质量越小,停留的时间越长。其中的道理很简单,假如一颗恒星全部由氢组成,它能够维持氢燃烧的时间等于恒星的质量除以它每秒发射的能量,就是主序星存在的时间。质量最大的恒星质量大约是太阳的100倍,而光度却是太阳的100万倍。显然,它能维持氢燃烧的时间只及太阳的万分之一,也就是只有数百万年。可以形象地打个比方,大质量恒星就好像一个挥霍浪费的富人,小质量恒星却是个节省俭朴的穷人,前者虽然富有,却肆意地挥霍,财富很快消耗殆尽;而后者则能细水长流地安度一生。
核反应的“灰烬”
随着时间的推移,经过氢氦聚变的恒星核心部分的氢燃料逐渐减少,氦元素逐渐增多。但是在星核外的壳层里仍有丰富的氢。所以,核心的氢燃料一旦耗尽之后,氢氦聚变反应就向包在氦核外面的壳层转移。这时的恒星中央是一个氦核,周围的壳层里进行着氢氦聚变。壳层的核燃烧使恒星整个外层变热发生膨胀,而膨胀就要变冷。从外面看来,恒星开始变大、颜色发红,恒星开始进入老年阶段。只需几亿年的时间,一颗主序星就会变成一颗红巨星,直径可达到原先的几十甚至几百倍。当太阳变成红巨星时,地球也可能会被太阳所吞没。那时,作为一个熔融的残核,地球可能依旧绕着太阳运行——在几千摄氏度高温的稀薄太阳大气中穿行,经过漫长的岁月后,最终旋入太阳中心。实际上,一旦到了主序的最后阶段,核反应就已向壳层逐渐转移,恒星开始变红变大。所以,未来20亿~30亿年之后,太阳就将进入这个阶段,届时,地球早巳变得很不适宜于人类居住。
恒星在主序后阶段的演变和最后的结局,与它们的质量密切相关。对于中小质量的恒星(两个太阳质量以下),中央氦核因氢氦聚变反应停止、热量得不到补充而开始引力收缩。而壳层里氢燃烧的氦“灰烬”却不断落入氦核,增大核区的引力,这使得氦核受到越来越大的压力。在恒星的核区,极高的温度使得电子早巳电离,脱离原子核的束缚,成为自由电子。现在,在巨大的压力下,自由电子将原子核间可能存在的空隙占满。
当氦核的温度达到上亿K时,将点燃氦聚变成碳和氧的核反应。两个氦核碰撞生成铍,铍又与氦核碰撞生成碳,碳与氦核生成氧。整个过程会释放约14兆电子伏的能量。在氦燃尽后,就留下一个碳氧核。
氦燃烧与氢燃烧不同。在氢燃烧阶段,恒星的核心呈气体状态,它在受热后能够极大地膨胀。膨胀起了控制核反应速度的作用——核心温度稍稍下降,于是核反应的速度减慢,释放的热量变少,核心又会稍稍地收缩,这有点像可控核反应。但是,在氦燃烧阶段,恒星的氦核却像固体那样,核心变热后膨胀极少,于是氦核反应是不可控制的,而是像脉冲式的一阵阵爆发。
对于质量较大的恒星,例如不超过6~8个太阳质量,主序之后的演化与中小质量恒星有所不同。质量较大的恒星,由于有足够多的物质,所以可以形成质量更大的氦核,温度也可以升得更高,因此,还可以点燃一系列核反应,比如温度达到8亿K时碳被点燃,可以聚变成氧、氖、钠、镁。质量大于8倍太阳质量的恒星,还能点燃更重元素的核反应,比如温度达到15亿K时点燃氖,20亿K时点燃氧,30亿K时点燃硅,一直到铁元素聚合形成为止。此后不再有新的能源,聚合成比铁更重的元素则吸收热量,而不是释放热量。
在氦燃烧阶段,恒星的光度常常时亮时暗,很多类型的变星都处在这个阶段。红巨星阶段较短,一般只是主序阶段的20%。
像太阳一样的恒星,依靠氦燃烧可以维持30亿年,而5倍太阳质量的恒星只能维持1000多万年。
经过红巨星的阶段后,恒星内留下了各种“核灰烬”:碳、氧、氖、镁、硅、氩、钙、钛、铁……成为今天的物质世界和一切生命中不可缺少的元素。
恒星的最后归宿
一旦氦核或碳氧核燃烧完毕,恒星即进入它一生的最后阶段。核心区内的核反应停止,氦燃烧转移到核外层,而氢在更外面的壳层内燃烧,它们维持着恒星最后的光芒。星核将再次收缩,而核外壳层却受热膨胀。这时,质量较大的恒星将成为一个又大又亮的“超巨星”。
恒星最后阶段的主要特征是向外大量抛射物质。对于中小质量的恒星,抛射物质和强大的辐射压力会引起物质的高速外流,这种现象称为“超星风”。超星风的速度可达到每秒1000多公里,会吹散星核外面的壳层,驱散周围残余的分子云物质,裸露出星核,恒星就成为“白矮星”。有时候,在恒星周围还会留下一个环状星云,称“行星状星云”。白矮星的个头很小,像太阳一样大的恒星最后生成的白矮星,直径也只有1万公里,比地球还小一些。但是,白矮星的密度极大,一勺物质可重达上万吨,密度是水的100万倍。白矮星的质量不会超过1.44倍的太阳质量,否则,星核还会收缩,最后形成“中子星”。白矮星形成后,将依靠余热发光,渐渐地变暗,变成“褐矮星”,最后成为一颗看不见的“黑矮星”,就像一块燃尽可燃物质的煤渣,颜色由明亮、暗红变到灰黑色。
恒星常常成双结伴,我们称为“双星”。当双星中的一颗成为白矮星后,会有物质源源不断地从伴星流向白矮星,从而引发热核反应,并以“超新星爆发”的面目出现。爆发的结果,有可能是仍然留下一颗白矮星,也可能是炸毁整个白矮星,什么都不留下。这种热核反应和超新星爆发,是铁族元素(铁、镍、钴等)和中等质量元素(钙、硅、硫、镁等)的重要来源。
对于质量更大的恒星,最后生成的是铁核。一旦铁核生成,核聚变反应就停止,铁核开始引力收缩,使密度和温度不断升高。当温度达到50亿K时,光子的能量就会破坏各种重原子核,使它们全部蜕变成质子和中子。最后,质子俘获电子生成中子。这些过程要吸收大量的热量,使得铁核的压强遽然下降,再也抵挡不住强大的引力,从而发生迅速的坍缩直径缩小到10公里左右。
整个过程十分短暂,一个密度达每立方厘米1万吨的铁核只需1毫秒便可完成坍缩,使其中全部物质被压缩到直径10公里大小的更小的核内,密度达到每立方厘米几亿吨。坍缩后的铁核不可能再被压缩,但是外层物质还在源源不断地以超音速落向铁核,当物质下落到铁核表面时,速度突然降为零,于是根据能量守恒定律,它们会像皮球般地反弹回去,从而引起超新星爆发,将核外的壳层抛向空间,剩下一颗中子星或一个黑洞,周围则常常遗留下一个星云遗迹。剩余的残核取决于恒星原先的质量和残核的质量,大于3倍太阳质量的残核将形成黑洞。
当然,十分剧烈的爆发也可以毁灭残核,什么都不留下。比铁更重的元素,如铂、金、铀,就是在这个最后阶段的超新星爆发时俘获中子而形成的。因为中子是中性的,所以它不会受到电荷之间作用力的影响,因而很容易接近原子核,形成更重的元素。
早在我国殷商时代的甲骨文字中就已经有超新星的记载,从汉代起,古代记录中的“客星”有时指的就是超新星。特别是北宋至和元年(1054年),当时的司天监记录了一颗客星,详情后载于史书《宋会要》中,这颗客星就是现在著名的蟹状星云,它得名于自己的形状。
20世纪20年代,有人发现这个星云在向外膨胀,推算这些云物质大约是在900年前从一个中心飞出来的,由此认为是发生于上世纪的一次超新星爆发。经过研究,证实了它就是宋代记载的1054年的客星遗迹。这次超新星爆发具有很高的研究价值,它是银河系内最年轻的超新星遗迹之一。1968年,在蟹状星云中心发现了一颗脉冲星,证明了中子星确实是超新星爆发所产生的。
2000年,天文学家在银河系里发现了3颗铅含量不同寻常的恒星,每颗所包含的铅都有月球质量那么多(即7000亿亿吨)。铅比铁更重,因此它们不可能是在恒星的红巨星阶段形成的。但是,超新星爆发时的短暂过程也不可能形成这么多的铅,这说明还存在另一种缓慢而温和的重元素俘获中子的过程。这种过程可能在恒星走向生命尽头并点燃内部氦燃料时就会发生
在氦被点燃时,会产生同位素碳13(6个质子,7个中子),碳13被氦4(2个中子,2个质子)撞击后,会产生氧16(8个中子,8个质子)。在这个过程中,竟然少了一个中子。正是该中子被重元素俘获,使得更重的金属元素的形成成为可能。2000年发现的3颗铅星都是双星,它们的伴星都是白矮星。事实上,铅星的伴星在成为白矮星前要大量抛射物质,这时铁族重元素也随之被抛到了空间,并进入铅星大气中,它们俘获中子生成了铅,逐步累积到了现有的含量。在你所乘坐的汽车的蓄电池里,也许就有这样生成的铅。
2002年,天文学家通过X射线望远镜,还发现了两个比中子星更为稠密、但还未稠密到能形成黑洞的天体,他们认为这种天体可能由夸克组成,所以称它们为“夸克星”。一小勺夸克星物质可以重达10亿吨。所有的重元素随着超星风、超新星爆发散发到星际空间,像种子一样掺和到星际气体尘埃中,变成了下一代恒星的原料。
在“核灰烬”中重生
经过数百万年,掺和有重元素的星际气体尘埃又将再次慢慢地汇聚成巨大的云团,然后重复前面发生的过程。超新星爆发产生的激波也会直接触发周围星际云的收缩,开始形成新一代恒星。就这样,一代又一代地传到了今天,每一代恒星都将自己产生的“核灰烬”——重元素留给下一代,造就了今天宇宙中各种元素的比例。
宇宙在大爆炸后约几十万年开始形成原子,从10亿年后开始形成星系和恒星。在宇宙的早期,主要成分是氢与氦,只有极少量的氘和锂,没有更重的元素。太阳的年龄为50亿年,按质量计算,它含有73%的氢、25%的氦和2%的金属元素,显然太阳不是第一代的恒星,因为太阳含有相当多的金属成分。银河系和其他附近星系的金属含量达到1%~3%,说明星系内的恒星绝大部分不是第一代。今天,在银河系和其他星系中,恒星的形成过程依然在进行着,不过远不如宇宙早期那么活跃。
恒星形成以后,某些恒星周围掺和有“核灰烬”的残余尘埃气体在绕恒星转动的过程中慢慢地形成星盘,最后诞生了像地球和火星一样的行星及彗星、小行星一类的小天体,以及行星上面的所有东西。所以,无论是岩石还是土壤,以及正在读这篇文章的你和写这篇文字的我——我们都是恒星“核熔炉”中的产物。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-11-09
地球上的物质从黑洞中来.有证据可以证明:
一项最新研究显示,银河系中央的小型黑洞能够超速“喷射”行星。在此之前,科学家认为只有特大质量黑洞才能以超速喷射行星。

研究人员称,实际上小型黑洞要比特大质量黑洞喷射更多数量的行星。1988年,美国洛斯?阿拉莫斯国家实验室物理学者杰克---希尔斯预言,银河系中央的特大质量黑洞能破坏双子行星平衡,束缚一颗行星,并以超高速将另一颗行星喷射出银河系。自2004年以来,天文学家共发现9颗被特大质量黑洞高速排斥的行星,他们推测这种特大质量黑洞的质量是太阳的360万倍。然而,美国哈佛--史密森天文物理中心赖安---奥利里和阿维---利奥伯从事的研究表明,银河系中央许多小型黑洞喷射出大量行星。
这些小型黑洞的质量大约只有太阳的10倍,一些研究认为银河系中央至少有25000个小型黑洞围绕在特大质量黑洞附近。当某些小型黑洞将行星喷射出银河系时,它们会进一步地靠近特大质量黑洞。利奥伯说,“小型黑洞比特大质量黑洞排斥喷射行星的速度更快!研究被喷射行星的轨迹和速度将有助于天文学家测定多少黑洞会喷射行星以及它们是如何排斥喷射行星的。”同时,他们也承认开展此项研究是很不容易的,现有的太空望远镜无法观测到银河系中央特大质量黑洞区域,该区域浓缩存在着许多小型黑洞。

研究人员推测,被特大质量喷射的行星速度达到709公里/秒,它们在银河系引力束缚下速度可能会更慢,估计这些行星被喷射时的初始速度达到1200公里/秒。然而,被小型黑洞喷射的行星速度要更快,行星在小型黑洞的排斥作用下可达到2000公里/秒速度脱离银河系本回答被提问者采纳
第2个回答  2008-11-06
地球
Earth

太阳系九大行星之一。地球在太阳系中并不居显著的地位,而太阳也不过是一颗普通的恒星。但由于人类定居和生活在地球上,因此对它不得不寻求深入的了解。
行星地球按离太阳由近及远的顺序,地球是第3个行星,它与太阳的平均距离是1.496亿千米,这个距离叫做一个天文单位(A)。地球的公转轨道是椭圆形,其轨道长半径为149597870千米,轨道偏心率为0.0167,公转轨道运动的平 均速度是29.79千米/秒。
地球的赤道半径约为6378 千米,极半径约为6357千米,二者相差约21千米。地球的平均半径约为6371千米。地球的平均密度为5.517克/厘米。地球的尺度和其他参量见表。
形状和大小中国古代对天地的认识有所谓浑天说。东汉张衡在《浑天仪图注》里写道:“天体圆如弹丸,地如鸡中黄……天之包地犹壳之裹黄。”地球是圆的这个概念在远古就已模糊地存在了。723年唐玄宗派一行和南宫说等人,在今河南省选定同一条子午线上的13个地点,测量夏至的日影长度和北极的高度,得到子午线一度之长为 351里80步( 唐代的度和长度单位)。折合现代的尺度就是纬度一度长132.3千米,相当于地球半径为7600千米,比现代的数值约大20%。这是地球尺度最早的估计(埃及人的测量更早一些,但观测点不在同一 子午线上,而且长度单位核算标准不详,精度无从估计)。
精确的地形测量只是到了牛顿发现万有引力定律之后才有可能,而地球形状的概念也逐渐明确。地球并非是很规则的正球体。它的表面可以用一个扁率不大的旋转椭球面来极好地逼近。扁率e为椭球长短轴之差与长轴之比,是表示地球形状的一个重要参量。经过多年的几何测量、天文测量以至人造地球卫星测量,它的数值已经达到很高的精度。这个椭球面不是真正的地球表面,而是对地面的一个更好的科学概括,用来作为全球各地大地测量的共同标准,所以也叫做参考椭球面。按照这个参考椭球面,子午圈上一平均度是111.1千米,赤道上一平均度是111.3千米。在参考椭球面上重力势能是相等的,所以在它上面各点的重力加速度是可以计算的,公式如下:

http://info.yqie.com/D/images/0939-b01.jpg

自转由于地球转动的相对稳定性,人类生活历来都利用它作为计时的标准,简单地说,地球绕太阳公转一周的时间叫做一年,地球自转一周的时间叫做一日。然而由于地球外部和内部的原因,地球的转动其实是很复杂的。地球自转的复杂性表现在自转轴方向的变化和自转速率即日长的变化。
自转轴方向的变化中,最主要的是自转轴在空间绕黄道轴缓慢旋进,造成春分点每年向西移动50.256〃的岁差。这是日、月对地球赤道突出部分吸引的结果。其次是地球自转轴相对于地球本身的位置变化,造成了地面各点的纬度变化。这种变化主要有两种成分:一种以一年为周期,振幅约为0.09〃,是大气和海水等季节性变化所引起的,是一种强迫振动;另一种成分以14个月为周期,振幅约为0.15〃,是地球内部变化所引起的,叫做张德勒摆动,是一种自由振动。此外还有一些较小的自由振动。
转速的变化造成日长的变化。主要有3类:长期变化是减速的,使日长每百年增加1~2毫秒,是潮汐摩擦的结果;季节性变化最大可使日长变化0.6毫秒,是气象因素引起的;不规则的短期变化,最大可使日长变化4毫秒,是地球内部变化的结果。
表面形态和地壳运动 地球的表面形态是极复杂的,有绵亘的高山,有广袤的海盆,还有各种尺度的构造。
地表的各种形态主要不是外力造成的,它们来源于地壳的构造运动。地壳运动的起因至少有以下几种设想:①地球的收缩或膨胀。许多地学家认为地球一直在冷却收缩,因而造成巨大的地层褶皱和断裂。然而观测表明,地面流出去的热量和地球内部因放射性物质的衰变而生出的热量是同量级的。也有人提出地球在膨胀的论据。这个问题现在尚无定论。②地壳均衡。在地壳以下的某一定深度,单位面积上的载荷有一种倾向于均等的趋势。地面上的巨大高差为地下深部横向物质流动所调节。 ③板块大地构造假说——地球最上层约八、九十千米厚的岩石层是由几块巨大的板块组成的。这些板块相互作用和相对运动就产生地面上一切大地构造现象。板块运动的动力来自何处,现在还不清楚,但不少人认为地球内部物质的对流起了决定性的作用。

电磁性质地磁场并不指向正南。11世纪中国的《梦溪笔谈》就有记载。地磁偏角随地而异。真正地磁场的形态是很复杂的。它有显著的时间变化,最大的变化幅度可达到总地磁场的千分之几或更高。变化可分为长期的和短期的。长期变化来源于地球内部的物质运动;短期变化来源于电离层的潮汐运动和太阳活动的变化。在地磁场中,用统计平均或其他方法将短期变化消去后就得到所谓基本地磁场。用球谐分析的方法可以证明基本地磁场有99%以上来源于地下,而相当于一阶球谐函数部分约占 80%,这部分相当于一个偶极场,它的北极坐标是北纬78.5°,西经69.0°。短期变化分为平静变化和干扰变化两大类。平静变化是经常出现的,比较有规律并有一定的周期,变化的磁场强度可达几十纳特;干扰变化有时是全球性的,最大幅度可达几千纳特,叫做磁暴。
基本磁场也不是完全固定的,磁场强度的图像每年向西漂移0.2°~0.3°,叫做西向漂移。这就指出地磁场的产生可能是地球内部物质流动的结果。现在普遍认为地球核主要是铁镍组成的(还包含少量的轻元素)导电流体,导体在磁场中运动便产生电流。这种电磁流体的耦合产生一种自激发电机的作用,因而产生了地磁场。这是当前比较最为人接受的地磁场成因的假说。
当岩浆在地磁场中降温而凝固成岩石时,便受到地磁场磁化而保留少许的永久磁性,称为热剩磁。大多数岩浆岩都带有磁性,其方向和成岩时的地磁场方向一致。由相同时代的不同岩石标本可以确定成岩时地球磁极的位置。但由不同地质时代的岩石标本所确定的地磁极位置却是不同的。这就给大陆漂移的假说提供了一个有力的证据。人们还发现,在某些地质时代成岩的岩石,磁化方向恰好和现代的地磁场方向相反。这是由于地球在形成之后,地磁场曾多次自己反向的结果。按照自激发电机地磁场成因假说,这种反向是可以理解的。地磁场的短期变化可以感应地下电流,而地下电流又引起地面的感应磁场。地下电流同地下物质的电导率有关,因而可由此估计地球内部的电导率分布。然而计算是复杂的,而且解答不单一。现在所能取得的一致意见是电导率随深度而增加,在60~100千米深度附近增加很快。在400~700千米的深处,电导率又有明显的变化,此处相当于地幔中的过渡层(又叫C层)。
温度和能源地面从太阳接受的辐射能量每年约有10焦耳,但绝大部分又向空间辐射回去,只有极小一部分穿入地下很浅的地方。浅层的地下温度梯度约为每增加30米,温度升高1℃ ,但各地的差别很大。由温度梯度和岩石的热导率可以计算热流。由地面向外流出的热量,全球平均值约为6.27微焦耳/厘米秒,由地面流出的总热能约为 10.032×1020焦耳/年。
地球内部的一部分能源来自岩石所含的放射性元素铀、钍、钾。它们在岩石中的含量近年来总在不断地修正,有人估计地球现在每年由长寿命的放射性元素所释放的能量约为9.614×1020焦耳,与地面热流很相近,不过这种估计是极其粗略的,含有许多未知因素。另一种能源是地球形成时的引力势能,假定地球是由太阳系中的弥漫物质积聚而成的。这部分能量估计有25×1032焦耳,但在积聚过程中有一大部分能量消失在地球以外的空间,有一小部分,约为1×1032焦耳,由于地球的绝热压缩而积蓄为地球物质的弹性能。假设地球形成时最初是相当均匀的,以后才演变成为现在的层状结构,这样就会释放出一部分引力势能,估计约为2×1030焦耳。这将导致地球的加温。地球是越转越慢的。地球自形成以来,旋转能的消失估计大约有1.5×1031焦耳,还有火山喷发和地震释放的能量,但其数量级都要小得多。
地面附近的温度梯度不能外推到几十千米深度以下。地下深处的传热机制是极其复杂的,由热传导的理论去估计地球内部的温度分布,常得不到可信的结果。但根据其他地球物理现象的考虑,地球内部某些特定深度的温度是可以估计的。结果如下:①在100千米的深度,温度接近该处岩石的熔点,约为 1100~1200℃;②在400千米和650千米的深度,岩石发生相变,温度各约在1500℃和1900℃;③ 在核幔边界,温度在铁的熔点之上,但在地幔物质的熔点之下,约为3700℃;④在外核与内核边界,深度为5100千米,温度约为4300℃,地球中心的温度,估计与此相差不多。
内部结构 地球的分层结构基本上是按地震波(P和S)的传播速度划分的。地球上层有显著的横向不均匀性:大陆地壳和海洋地壳的厚度大不相同,海水只覆盖着2/3的地面。
地震时,震源辐射出两种地震波,纵波P和横波S。它们各以不同的速度向四围传播�经过不同的时间到达地面上不同的地点。若在地面上记录到P和S的传播时间随震中距离的变化,就可以推算地下不同深度地震波的传播速度υp和υs。
地球内部的分层就是由地震波速度分布定义的,在海水之下,地球最上层叫做地壳,厚约几十千米。地壳以下直对地核,这部分统称为地幔。地幔内部又有许多层次。地壳与地幔的边界是一个明显的间断面,称为M界面或莫霍界面。界面以下约到会80千米的深度,速度变化不大,这部分叫做盖层。再往下,速度变化不大,这部分叫做盖层。再往下,速度明显降低,直到约220千米深度才又回升。这部分叫低速带。以下直到2891千米深度叫做下地幔。核幔边界是一个极明显的间断面。进入地核,S波消失,所以地球外核是液体。到了5149.5千米的深度,S波又出现,便进入了地球内核。
由地球的速度和密度的分布可以计算出地球内部的两个弹性常数、压力和重力加速度的分布。在地幔中,重力加速度g的变化很小,只是过了核幔边界才向地心递减至零。在核幔边界处的压力为1.36兆巴,在地心处为3.64兆巴。
内部物质组成地震波的速度和密度分布对于地球内部的物质组成是一个限制条件。地球核有约90%是由铁镍合金组成的,但还含有约法三章10%的较轻物质;可能是硫或氧。关于地幔的矿物组成,现在还存在分歧意见。地壳中的岩石矿物是由地幔物质分异而成的。火山活动和地幔物质的喷发表明地幔的主要矿物是橄榄岩。地震波速度的数据表明在内400、500、和谐500千米的深度,波速的梯度很大。这可解释为矿物相变的结果。在内400千米的深处,橄榄石相变为尖晶石的结构,而辉石则熔入石榴石。在家500千米的深度,辉石也分解为尖晶石和超石英的结构。在先650千米深度下,这些矿物都为钙钛矿和氧化物结构。在下地幔最下的200千米中,物质密度有显著增加。这个区域有无铁元素的富集还是一个有争论的问题。
起源和演化地球的起源和演化问题实际上也就是太阳系的起源和演化问题。早期的假说主要分两大派:以康德和拉普拉斯为代表的渐变派和以G.L.L.布丰为代表的灾变派。渐变派认为太阳系是由高温的旋转气体逐渐冷却而成的;灾变派主张太阳系是由此及彼2个或3个恒星发生碰撞或近距离吸引而产生的。早期的假说主要企图解释一些天文事实,如行星轨道的规律性,内行星和外行星的区别。太阳系中角动量的分布等。在全面解释上述观测事实时,两派都遇到不可克服的因难。
从20世纪40年代中期起,人们逐渐倾向于太阳系起源于低温的固体尘埃的观点。较早的倡议者有魏茨泽克、施米特和尤里。他们认为行星不是由高温气体凝固而成,而是由温度不高的固体尘物质积聚而成的。
地球形成时基本上是各种石质物体和尘、气的混合物积聚而成的。初始地球的平均温度估计不超过去时1000℃。由于长寿命放射性无素的衰变和引力势能的释放,地球的温度逐渐升高。当温度超过铁的熔点时,原始地球中的铁元素就化成液态,由于密度大就流向地球的中心部分,从而形成了地核。地球内部温度继续升高,使地幔局部熔化,引起了化学分异,促进了地壳形成。
海洋和大气都不是地球形成时就有的,而是次生的。因为原始地球不可能保持大气和水。海洋是地球内部增温和分异的结果。原始大气是从地球内部放出的,是还原性的。直到绿色植物出现后,大气中才逐渐积累了自由氧,在漫长的地质年代中逐渐形成现在的大气(见地球起源)。
年龄 地球的年龄,如果定义为原始地球形成后到现在的时间,则由岩石和矿物所含的放射性同位素可以测定。但是这样做时,仍免不了对地球的初始状态做一些假定,根据岩石矿物中和陨石中铅同位素的精密分析,现在一般都接受的地球年龄约为46亿年。
第3个回答  2008-11-06
现在最权威的说法是:在太阳系形成初期,99%以上的物质向中心聚合成为太阳,周围还有部分散在的物质碎片围绕着太阳旋转,经过很长一段时间的碰撞和引力作用,散在的碎片逐渐聚合成了九大行星,但那时的地球只是一团混沌的物质,又经过了几十万年,物质逐渐冷却凝固,形成了地球的初步形态,再经过几十万年,由于地球的引力作用,由地球内部化学反应所产生的气体喷出后被保存在地球周围,形成了大气层,并由氢气和氧气化合成了水,再然后经过太阳的能量辐射,地球本身的电场、磁场作用和适宜的生存环境,由水中产生了有机物,也就是一切生命的祖先……

之后就不用说了
第4个回答  2008-11-06
一般是大型恒星爆炸时产生···至于黑洞嘛··没什么爆炸的可能··
相似回答