无刷无霍尔BLDC电机控制(转)

如题所述

无刷无霍尔BLDC电机控制:革新之路



在电机世界中,传统的控制方式正逐渐被无霍尔BLDC电机所替代。这种创新技术的核心在于,通过精确捕捉反电动势的过零点,实现了对转子位置的精确判断,无需依赖昂贵的霍尔传感器。这样做的好处在于显著降低了成本,简化了电路连接,为各种应用场景提供了更经济高效的解决方案。

BLDC电机的驱动控制采用六步换向策略,巧妙地利用电机内部的反电动势(BEMF)波形来精确定位换相点。关键环节在于反电动势过零检测,这是无霍尔BLDC控制的灵魂所在。通过智能的电流和磁场控制,电机得以按照预设方向稳定运转。

图1和图2揭示了BLDC电机的结构和驱动电路设计,而图3则生动展示了电流和反电动势的动态变化。在实际操作中,通过对60°非供电时段的相电压监测,可以间接检测过零点。由于Y形连接的特性,相电压测量并非直接,通常需要通过端电压与虚拟中性点电压的比较来实现。尽管存在开关噪声的挑战,通过巧妙的采样策略,如在PWM“ON”期间延迟采样,大部分应用场合都能避免噪声干扰。

在电机启动和换相的瞬间,可能会出现电流尖峰,特别是在PWM占空比较大的情况下。为确保数据准确,采样应在刚换相后的一两个周期内暂停,以防止尖峰影响。而在PWM“OFF”期间,可以通过体二极管续流来采样反电动势,但需要考虑占空比对采样策略的影响,特别是在低速运转和特殊电压状况下。

闭环调速是无霍尔BLDC控制的重要组成部分。通过检测反电动势过零点,理论上的换相点应在过零点超前30°。然而,实际操作中需要实时调整延时,以实现精确的闭环控制。对于转速控制,通过调整PWM的占空比,可以轻松调整电机的运行速度,半桥和全桥调制各有其优缺点。

尽管无霍尔BLDC控制在定位、加速和闭环切换等方面存在一些挑战,如定位方法中的变感检测法理论虽优,但在实际应用中还需验证。然而,随着电机技术的不断进步,这些难题有望得到简化。总的来说,无霍尔BLDC电机以其独特的优点,正在逐步引领电机控制的未来。

参考文献:深入探讨无霍尔BLDC电机控制的多篇技术文档和专业论文。
温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜