如何计算不定积分?

如题所述

    根式换元法:

设√(x+2)=t,则x=(t^2-2),代入得:

∫x√(x+2)dx

=∫t*(t^2-2)d(t^2-2),

=2∫t^2*(t^2-2)dt,

=2∫(t^4-2t^2)dt,

=2/5*t^5-4/3*t^3+C,

=2/5*(x+2)^(5/2)-4/3*(x+2)^(3/2)+C,

    凑分法不定积分:

∫x√(2x^2+1)^3dx

=(1/2)∫√(2x^2+1)^3dx^2

=(1/4)∫√(2x^2+1)^3d2x^2

=(1/4)∫(2x^2+1)^(3/2)d(2x^2+1)

=(1/4)*(2/5)* (2x^2+1)^(5/2)+C.

=(1/10)* (2x^2+1)^(5/2)+C.

    分部积分法计算不定积分:

∫x^4 (lnx)^2dx

=(1/5)∫(lnx)^2dx^a11,以下第一次使用分部积分法,

=(1/5) (lnx)^2*x^5-(1/5)∫x^5d(lnx)^2

=(1/5) (lnx)^2*x^5-(2/5)∫x^5*lnx*(1/x)dx

=(1/5) (lnx)^2*x^5-(2/5)∫x^4*lnxdx

=(1/5) (lnx)^2*x^5-(2/25)∫lnxdx^5,以下第二次使用分部积分法,

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5dlnx

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5*1/xdx

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^adx

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/125)x^5+c

=x^5 [(1/5) (lnx)^2-(2/25)lnx+(2/125)]+c

=(1/125)x^5 [25 (lnx)^2-10lnx+2]+c.

    凑分及分部积分法

∫(10x^2+x+1)lnxdx

=∫lnxd(10x^3/3+x^2/2+x),对幂函数部分进行凑分,

=lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dlnx

=lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dx/x

=lnx*(10x^3/3+x^2/2+x)-∫(10x^2/3+x/2+1)dx

=lnx*(10x^3/3+x^2/2+x)-(10x^3/9+x^2/4+x)+C。

不定积分概念

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

    不定积分的计算

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2022-12-06

计算过程如下:

原式=∫secxdtanx

=secx*tanx-∫(tanx)^2secxdx

=secx*tanx-∫[(secx)^2-1]*secxdx

=secx*tanx-∫(secx)^3dx+∫secxdx

2∫(secx)^3=secx*tanx+∫secxdx

∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C

不定积分的性质:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

相似回答