矩阵求逆有两种求法:
(1) 用伴随矩阵求,即 A^(-1)=A*/|A|. 用于低阶矩阵求逆,特别是二阶矩阵求逆。
(2) 行初等变换法。
本题用法(1)。
P=
[1 1]
[1 -1]
|P|=-2,
P* =
[-1 -1]
[-1 1]
P^(-1)=(1/2)*
[1 1]
[1 -1]
逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。