单调有界函数必有极限吗?

如题所述

有界却不一定有极限。

函数的极限情形比数列要复杂的多。数列只是在变量n→∞时单调有界则必有极限,而函数的变量变化则分多种情况:x→∞(+∞或-∞);x→a(a是常数,+a或-a)。左右极限存在但不相等,则函数极限不存在。并且要考虑函数是否存在间断点

有界函数的简介

有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。

有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。

一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-03-16
1.高等数学有一定理:如果数列{Xn}收敛,即数列有极限,那么数列{XN}一定有界。但是有界却不一定有极限,例如数列
1,-1,1,-1,。。。。同样有界函数也不一定有极限,例如
f(x)=sinx
.
2.但是单调有界数列就不同,因为它只能是单调增加或者减少。有界函数的定义是:如果存在着正数M,使得对于一切的Xn都满足不等式:Xn的绝对植《=M。如果有界且单调,数列肯定有极限,就是M。
3。同样的,如果函数有界,函数肯定有极限,就是M。因为是是单调的话,数列与函数的区别不大,就是函数连续而数列不连续而已。
相似回答
大家正在搜