八进制和十六进制是怎样算得的?

举个例子说明

进制转换 一般来说,对于任意大于1的整数n,存在n进制,其特点是基数为n,逢n进一。其中最常用的是二进制、八进制和十六进制。 任意进制的数字对应的十进制值为: Kn×Bn + Kn-1×Bn-1 + …… + K1×B1 + K0×B0 + K-1×B-1 + K-2×B-2 …… + K-m×B-m 上式中,B称为数字系统的基数,Bn至B0称为数字Kn至K0的权值。 1.基本知识 十进制 基数为10,逢10进1。在十进制中,一共使用10个不同的数字符号,这些符号处于不同位置时,其权值各不相同。 二进制 基数为2,逢2进1。在二进制中,使用0和1两种符号。 八进制 基数为8,逢8进1。八进制使用8种不同的符号,它们与二进制的转换关系为: 0:000 1:001 2:010 3:011 4:100 5:101 6:110 7:111 十六进制 基数为16,逢16进1。十六进制使用16种不同的符号,它们与二进制的转换关系为: 0:0000 1:0001 2:0010 3:0011 4:0100 5:0101 6:0110 7:0111 8:1000 9:1001 A:1010 B:1011 C:1100 D:1101 E:1110 F:1111 二进制数的运算 算术运算:加法 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10(向高位进1) 算术运算:减法 0 ? 0 = 0 0 ? 1 = 1(向高位借1) 1 ? 0 = 1 1 - 1 = 0 逻辑运算:或(∨) 0∨ 0 = 0 0 ∨ 1 = 1 1 ∨ 0 = 1 1 ∨ 1 = 1 逻辑运算:与(∧) 0∧ 0 = 0 0 ∧ 1 = 0 1 ∧ 0 = 0 1 ∧ 1 = 1 逻辑运算:取反 0取反为1 1取反为0 注意:算术运算会发生进位、借位,逻辑运算则按位独立进行,不发生位与位之间的关系,其中,0表示逻辑假,1表示逻辑真。 2.转换为十进制 二进制化为十进制 例:将二进制数101.01转换成十进制数 (101.01)2 = 1×22 + 0×21 + 1×20 + 0×2-1 + 1×2-2 = (5.25)10 八进制化为十进制 例:将八进制数12.6转换成十进制数 (12.6)8 = 1×81 + 2×80 + 6×8-1 = (10.75)10 十六进制化为十进制 例:将十六进制数2AB.6转换成十进制数: (2AB.6)16 = 2×162 + 10×161 + 11×160 + 6×16-1 = (683.375)10 3.转换为二进制 八进制化为二进制 规则:按照顺序,每1位八进制数改写成等值的3位二进制数,次序不变。 例: (17.36)8 = (001 111 .011 110)2 = (1111.01111)2 十六进制化为二进制 规则:每1位十六进制数改写成等值的4位二进制数,次序不变。 例: (3A8C.D6)16 = (0011 1010 1000 1100.1101 0110)2 = (11101010001100.1101011)2 十进制整数化为二进制整数 规则:除二取余,直到商为零为止,倒排。 例:将十进制数86转化为二进制 2 | 86…… 0 2 | 43…… 1 2 | 21…… 1 2 | 10…… 0 2 | 5 …… 1 2 | 2 …… 0 2 | 1 …… 1 结果:(86)10 = (1010110)2 十进制小数化为二进制小数 规则:乘二取整,直到小数部分为零或给定的精度为止,顺排。 例:将十进制数0.875转化为二进制数 0.875 × 2 1.75 × 2 1.5 ×2 1.0 结果:(0.875)10 = (0.111)2 4.转换为八进制 二进制化为八进制 整数部份从最低有效位开始,以3位一组,最高有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的整数。 小数部份从最高有效位开始,以3位一组,最低有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的小数。 例:(11001111.01111)2 = (11 001 111.011 110)2 = (317.36)8 十六进制化为八进制 先用1化4方法,将十六进制化为二进制;再用3并1方法,将二进制化为8制。 例: (1CA)16 = (000111001010)2 = (712)8 说明:小数点前的高位零和小数点后的低位零可以去除。 十进制化八进制 方法1:采用除8取余法。 例:将十进制数115转化为八进制数 8| 115…… 3 8| 14 …… 6 8| 1 …… 1 结果:(115)10 = (163)8 方法2:先采用十进制化二进制的方法,再将二进制数化为八进制数 例:(115)10 = (1110011)2 = (163)8 5.转换为十六进制 二进制化为十六进制 整数部份从最低有效位开始,以4位为一组,最高有效位不足4位时以0补齐,每一组均可转换成一个十六进制的值,转换完毕就是十六进制的整数。 小数部份从最高有效位开始,以4位为一组,最低有效位不足4位时以0补齐,每一组均可转换成一个十六进制的值,转换完毕就是十六进制的小数。 例:(11001111.01111)2 = (1100 1111 .0111 1000)2 = (CF.78)16 八进制化为十六进制 先将八进制化为二进制,再将二进制化为十六进制。 例:(712)8 = (111001010)2 = (1CA)16 十进制化为十六进制 方法1:采用除16取余法。 例:将十进制数115转化为八进制数 16| 115…… 3 16| 7 …… 7 结果:(115)10 = (73)16 方法2:先将十进制化为二进制,再将二进制化为十六进制。 例:(115)10 = (1110011)2 = (73)16
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-04-25
25.625)(十) 整数部分: 25/8=3...1 3/8 =0...3 然后我们将余数按从下往上的顺序书写就是:31,那么这个31就是十进制25的八进制形式 小数部分: 0.625*8=5 然后我们将整数部分按从上往下的顺序书写就是:5,那么这个5就是十进制0.625的八进制形式 所以:(25.625)(十)=(31.5)(八) 4. 八 ----> 十 (31.5)(八) 整数部分: 3*8(1)+1*8(0)=25 小数部分: 5*8(-1)=0.625 所以(31.5)(八)=(25.625
第2个回答  2014-04-24
十----> 十六 (25.625)(十) 整数部分: 25/16=1...9 1/16 =0...1 然后我们将余数按从下往上的顺序书写就是:19,那么这个19就是十进制25的十六进制形式 小数部分: 0.625*16=10(即十六进制的A或a) 然后我们将整数部分按从上往下的顺序书写就是:A,那么这个A就是十进制0.625的十六进制形式 所以:(25.625)(十)=(19.A)(十六) 6. 十六----> 十 (19.A)(十六) 整数部分: 1*16(1)+9*16(0)=25 小数部分: 10*16(-1)=0.625 所以(19.A)(十六)=(25.625)(十)
第3个回答  推荐于2017-09-25
八进制是逢八进一 十进制:1 2 3 4 5 6 7 8 9 10 八进制:1 2 3 4 5 6 7 10 11 12 十六进制是逢十六进一 十进制: 1 2 3 4 5 6 7 8 9 10 十六进制:1 2 3 4 5 6 7 8 8 A 进制算法 十进制数 想把它算成几进制的数就让它除以几有余数的将余数取出,若除尽 用零补,将除得的商,在除以要算得进制数。取商取余和上面说的相同。除到不满除数为止。将余数逆向写出。即得到该十进制数转化得要得到的进制数。如 10 转化成2进制 10/2=5 余数为0,5/2=2余数为1,2/2=1 余数为0,1/2=0 余数为1 即1010本回答被提问者采纳
相似回答