怎么用python显示一张图片

如题所述

  在 python 中除了用 opencv,也可以用 matplotlib 和 PIL 这两个库操作图片。本人偏爱 matpoltlib,因为它的语法更像 matlab。
  一、matplotlib
  1. 显示图片
  复制代码
  import matplotlib.pyplot as plt # plt 用于显示图片
  import matplotlib.image as mpimg # mpimg 用于读取图片
  import numpy as np
  lena = mpimg.imread('lena.png') # 读取和代码处于同一目录下的 lena.png
  # 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理
  lena.shape #(512, 512, 3)
  plt.imshow(lena) # 显示图片
  plt.axis('off') # 不显示坐标轴
  plt.show()
  复制代码
  2. 显示某个通道
  复制代码
  # 显示图片的第一个通道
  lena_1 = lena[:,:,0]
  plt.imshow('lena_1')
  plt.show()
  # 此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数,有如下几种添加方法:
  plt.imshow('lena_1', cmap='Greys_r')
  plt.show()
  img = plt.imshow('lena_1')
  img.set_cmap('gray') # 'hot' 是热量图
  plt.show()
  复制代码
  3. 将 RGB 转为灰度图
  matplotlib 中没有合适的函数可以将 RGB 图转换为灰度图,可以根据公式自定义一个:
  复制代码
  def rgb2gray(rgb):
  return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
  gray = rgb2gray(lena)
  # 也可以用 plt.imshow(gray, cmap = plt.get_cmap('gray'))
  plt.imshow(gray, cmap='Greys_r')
  plt.axis('off')
  plt.show()
  复制代码
  4. 对图像进行放缩
  这里要用到 scipy
  复制代码
  from scipy import misc
  lena_new_sz = misc.imresize(lena, 0.5) # 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸
  plt.imshow(lena_new_sz)
  plt.axis('off')
  plt.show()
  复制代码
  5. 保存图像
  5.1 保存 matplotlib 画出的图像
  该方法适用于保存任何 matplotlib 画出的图像,相当于一个 screencapture。
  plt.imshow(lena_new_sz)
  plt.axis('off')
  plt.savefig('lena_new_sz.png')
  5.2 将 array 保存为图像
  from scipy import misc
  misc.imsave('lena_new_sz.png', lena_new_sz)
  5.3 直接保存 array
  读取之后还是可以按照前面显示数组的方法对图像进行显示,这种方法完全不会对图像质量造成损失
  np.save('lena_new_sz', lena_new_sz) # 会在保存的名字后面自动加上.npy
  img = np.load('lena_new_sz.npy') # 读取前面保存的数组
  二、PIL
  1. 显示图片
  from PIL import Image
  im = Image.open('lena.png')
  im.show()
  2. 将 PIL Image 图片转换为 numpy 数组
  im_array = np.array(im)
  # 也可以用 np.asarray(im) 区别是 np.array() 是深拷贝,np.asarray() 是浅拷贝
  3. 保存 PIL 图片
  直接调用 Image 类的 save 方法
  from PIL import Image
  I = Image.open('lena.png')
  I.save('new_lena.png')
  4. 将 numpy 数组转换为 PIL 图片
  这里采用 matplotlib.image 读入图片数组,注意这里读入的数组是 float32 型的,范围是 0-1,而 PIL.Image 数据是 uinit8 型的,范围是0-255,所以要进行转换:
  import matplotlib.image as mpimg
  from PIL import Image
  lena = mpimg.imread('lena.png') # 这里读入的数据是 float32 型的,范围是0-1
  im = Image.fromarray(np.uinit8(lena*255))
  im.show()
  5. RGB 转换为灰度图
  from PIL import Image
  I = Image.open('lena.png')
  I.show()
  L = I.convert('L')
  L.show()
温馨提示:答案为网友推荐,仅供参考
第1个回答  2018-03-30

用python显示一张图片方法如下:

import matplotlib.pyplot as plt # plt 用于显示图片

import matplotlib.image as mpimg # mpimg 用于读取图片

import numpy as nplena = mpimg.imread('lena.png') # 读取和代码处于同一目录下的 lena.png# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理

lena.shape #(512, 512, 3)plt.imshow(lena) # 显示图片plt.axis('off') # 不显示坐标轴

plt.show()

Python, 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年,Python 源代码同样遵循 GPL(GNU General Public License)协议。

Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。

常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。

本回答被网友采纳
相似回答