一副直角三角板如图放置,点C在FD延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10.(1)

一副直角三角板如图放置,点C在FD延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10.(1)求∠CBD的度数;(2)试求CD的长.

解:(1)∵∠F,∠E=45°,
∴∠EDF=45°,
∵∠ACB=90°,∠A=60°,
∴∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∵∠ABC=30°,
∴∠CBD=∠ABD-∠ABC=15°;

(2)过点B作BM⊥FD于点M,
在△ACB中,∠ACB=90°,∠A=60°,AC=10,
∴∠ABC=30°,BC=AC×tan60°=10
3

∵AB∥CF,
∴BM=BC×sin30°=10
3
×
1
2
=5
3

CM=BC×cos30°=15,
在△EFD中,∠F=90°,∠E=45°,
∴∠EDF=45°,
∴MD=BM=5
3

∴CD=CM-MD=15-5
3
温馨提示:答案为网友推荐,仅供参考
相似回答