如图,双曲线y=5x在第一象限的一支上有一点C(1,5),过点C的直线y=-kx+b(k>0)与x轴交于点A(a,0)

如图,双曲线y=5x在第一象限的一支上有一点C(1,5),过点C的直线y=-kx+b(k>0)与x轴交于点A(a,0)、与y轴交于点B.(1)求点A的横坐标a与k之间的函数关系式;(2)当该直线与双曲线在第一象限的另一交点D的横坐标是9时,求△COD的面积.

(1)∵点C(1,5)在直线y=-kx+b(k>0)上,
∴5=-k?1+b
∴b=k+5
∴y=-kx+k+5
∵点A(a,0)在直线y=-kx+k+5上
∴0=-ka+k+5
a=
5
k
+1


(2)∵直线与双曲线在第一象限的另一交点D的横坐标是9,
设点D(9,y)代入y=
5
x
得:
y=
5
9

∴点D(9,
5
9

代入y=-kx+k+5
可解得:k=
5
9
y=?
5
9
x+
50
9

可得:点A(10,0),点B(0,
50
9

∴S△COD=S△AOB-S△AOD-S△BOC
=
1
2
×10×
50
9
?
1
2
×10×
5
9
?
1
2
×
50
9
×1

=
1
2
×
50
9
(10?1?1)

=
200
9
温馨提示:答案为网友推荐,仅供参考
相似回答