二倍角公式:
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
倍角公式和半角公式都是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。
正弦二倍角公式:sin2α=2cosαsinα。余弦二倍角公式:cos2α=2cos^2α-1;cos2α=1−2sin^2α;cos2α=cos^2α−sin^2α;正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]。
二倍角公式推导公式
正弦二倍角公式:sin2α=2cosαsinα
推导:
sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα
余弦二倍角公式:
余弦二倍角公式有三组表示形式,三组形式等价:
1.cos2α=2cos^2α-1
2.cos2α=1−2sin^2α
3.cos2α=cos^2α−sin^2α
推导:
cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A
正切二倍角公式:
tan2α=2tanα/[1-(tanα)^2]
tan(1/2*α)=(sinα)/(1+cosα)=(1-cosα)/sinα