首先看
∑1/ln(1+n)
因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞) n/ln(1+n)=lim(n→∞) 1/(1/(n+1))
=lim(n→∞) n+1=∞
而∑1/n发散,所以∑1/ln(1+n)发散
所以不是绝对收敛
然后对于交错级数∑(-1)^n-1/ln(1+n)收敛性,由莱布里茨判别法:
lim(n→∞)1/ln(1+n)=0
且 1/ln(1+n)>1/ln(n+2)
所以交错级数∑(-1)^n-1/ln(1+n)收敛,且和S
例如:
判断∞∑n=[(_1)^(n-1)]/ln(n 1)的敛散性,若收敛,指出是绝对收敛还是条件 …… ∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞) n/ln(1+n)=lim(n→∞) 1/(1/(n+1))=lim(n→∞) n+1=∞
而∑1/n发散,所以∑1/ln(1+n)发散所以不是绝对收敛然后对于交错级数∑(-1)^n-1/ln(1+n)收敛性,由莱布里茨判别法:lim(n→∞)1/ln(1+n)=0且 1/ln(1+n)>1/ln(n+2)所以交错级数∑(-1)^n-1/ln(1+n)收敛