如何实现模拟信号数字化?

如题所述

模拟信号数字化有三个基本过程:

第一个过程是“抽样”,就是以相等的间隔时间来抽取模拟 信号的样值,使连续的信号变成离散的信号。

第二个过程叫“量化”,就是把抽取的样值变换为最接近 的数字值,表示抽取样值的大小。

第三个过程是“编码”,就是把量化的数值用一组二进制的数码来表示。

经过这样三个过程可以完成模拟信号的数字化,这种方法叫作“脉冲编码”。数字信号传送到接收 端后,需要有一个还原的过程,即把收到的数字信号再变回模拟信号,为接收者所能理解。这个过程叫 作“数模变换”,使之再现为声音或图像。

扩展资料

软件无线电中通常采用的ADC和DAC的结构包括以下4种类型:

(1)并行结构,包括Flash-ADC和串状DAC;

(2)分段结构,包括折叠内插ADC和“分段”梯形DAC;

(3)迭代结构,包括分区ADC、流水线型ADC、逐次逼近型ADC;

(4)Σ-△结构,包括Σ-△ADC和DAC。

下面以ADC为例对以上几种结构进行介绍。

1.并行结构

并行结构的数据转换器的基本思想是:同时比较待转换的信号电平与所有级别的量化电平之间的关系,在模拟信号和数字信号之间相互转换。并行结构所对应的A/D和D/A转换器件分别为Flash-ADC和串状DAC。

Flash-ADC内含一列并联比较器,一列由电阻分压器产生的电平作为相应的比较器的基准电压。被转换的模拟电压信号同时加到全部比较器上,各比较器的输出经编码后作为ADC的输出,如图2.12所示。

一个分辨率为N(bit)的Flash-ADC含有2N个精密电阻,2N−1个高速比较器;分辨率每增加1bit,需要增加2N个精密电阻和2N个高速比较器,这会大大增加集成的复杂度和器件功耗。因此一般Flash-ADC的分辨率无法达到很高。

串状DAC是实现Flash-ADC的逆操作,因使用电阻串来构造参考电压而得名,在有的书中也被称为开尔文分配器。串状DAC依靠待转换数据来控制一组开关,以产生合适的电流通过精密电阻,从而产生合适的模拟信号电压。

并行结构只需要一级模拟电路,因此具有设计简单,转换时间短,速度快的优点,在所有可能的结构中提供最快的数据转换。在分辨率要求较低的情况下,Flash-ADC和串状DAC两种结构都容易采用超大规模集成电路(VLSI)进行设计。

然而,由于比较器(或开关)和精密电阻的数量随着转换器的分辨率呈指数增长,Flash-ADC和串状DAC的芯片面积和功耗也随之呈指数增长。

参考资料模数转换_百度百科

模拟信号_百度百科

数字信号_百度百科

温馨提示:答案为网友推荐,仅供参考
相似回答