已知:如图,在等边三角形ABC中,点D是AC边上的一个动点(D与A,C不重合),延长AB到E,使BE=CD,连接DE

已知:如图,在等边三角形ABC中,点D是AC边上的一个动点(D与A,C不重合),延长AB到E,使BE=CD,连接DE交BC于点F.(1)求证:DF=EF;(2)若△ABC的边长为10,设CD=x,BF=y,求y与x的函数关系式,写出自变量x的取值范围.

(1)证明:过点D作DM∥AE交BC于点M,
∴∠CDM=∠A,∠CMD=∠ABC,
又∵在等边三角形ABC中,∠A=∠ABC=∠C=60°,
∴∠CDM=∠CMD=∠C
∴△CDM是等边三角形,
∴CD=DM,
又∵CD=BE,
∴BE=DM,
∵DM∥AE,
∴∠MDF=∠E,
在△DMF和△EBF中,
∠MDF=∠E,
∠DFM=∠EFB,
DM=BE,
∴△DMF≌△EBF(AAS),
∴DF=EF;                                   

(2)由(1)得△DMF≌△EBF,
∴BF=MF=y,
由(1)得△CDM是等边三角形,
∴CM=CD=x,
又∵CM+MF+FB=BC=10,
∴2y+x=10,
y=5?
1
2
x
(0<x<10).
温馨提示:答案为网友推荐,仅供参考
相似回答