知道丝杠参数 现在想计算带动的电动机各项参数以及型号 要具体步骤

知道丝杠参数 现在想计算带动的三相异步电动机各项参数以及型号 要具体计算步骤

伺服电机的选择
伺服电机:伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移;可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。
闭环半闭环:格兰达的设备用伺服电机都是半闭环,只是编码器发出多少个脉冲,无法进行反馈值和目标值的比较;如是闭环则使用光栅尺进行反馈。 开环步进电机:则没有记忆发出多少个脉冲。
伺服:速度控制、位置控制、力矩控制
增量式伺服电机:是没有记忆功能,下次开始是从零开始;
绝对值伺服电机:具有记忆功能,下次开始是从上次停止位置开始。
伺服电机额定速度3000rpm,最大速度5000 rpm; 加速度一般设0.05 ~~ 0.5s
计算内容:
1.负载(有效)转矩T<伺服电机T的额定转矩
2.负载惯量J/伺服电机惯量J< 10 (5倍以下为好)
3.加、减速期间伺服电机要求的转矩 < 伺服电机的最大转矩
4.最大转速<电机额定转速
伺服电机:编码器分辨率2500puls/圈;则控制器发出2500个脉冲,电机转一圈。
1.确定机构部。 另确定各种机构零件(丝杠的长度、导程和带轮直径等)细节。
典型机构:滚珠丝杠机构、皮带传动机构、齿轮齿条机构等
2.确定运转模式。 (加减速时间、匀速时间、停止时间、循环时间、移动距离)
运转模式对电机的容量选择影响很大,加减速时间、停止时间尽量取大,就可以选择小容量电机
3.计算负载惯量J和惯量比(x kg.)。 根据结构形式计算惯量比。 负载惯量J/伺服电机惯量J< 10 单位(xkg.)
计算负载惯量后预选电机,计算惯量比
4.计算转速N【r/min】。 根据移动距离、加速时间ta、减速时间td、匀速时间tb计算电机转速。
计算最高速度Vmax x tax Vmax + tb x Vmax + x tdx Vmax = 移动距离 则得Vmax=0.334m/s(假设)
则最高转速:要转换成N【r/min】,
1)丝杆转1圈的导程为Ph=0.02m(假设) 最高转速Vmax=0.334m/s(假设
N = Vmax/Ph = 0.334/0.02=16.7(r/s)
= 16.7 x 60 = 1002(r/min)< 3000(电机额定转速)
2)带轮转1全周长=0.157m(假设) 最高转速Vmax=1.111(m/s)
N = Vmax/Ph = 1.111/0.157 = 7.08(r/s)
= 7.08 x 60 = 428.8 (r/min)< 3000(电机额定转速)
5.计算转矩T【N . m】。 根据负载惯量、加减速时间、匀速时间计算电机转矩。
计算移动转矩、加速转矩、减速转矩
确认最大转矩:加减速时转矩最大 < 电机最大转矩
确认有效转矩:有效(负载)转矩 < 电机额定转矩
6.选择电机。 选择能满足3~5项条件的电机。
1.转矩[N.m]:1)峰值转矩:运转过程中(主要是加减速)电机所需要的最大转矩;为电机最大转矩的80%以下。
2)移动转矩、停止时的保持转矩:电机长时间运行所需转矩;为电机额定转矩的80%以下。
3)有效转矩:运转、停止全过程所需转矩的平方平均值的单位时间数值;为电机额定转矩的80%以下。

Ta:加速转矩 ta:加速时间 Tf:移动转矩 tb:匀速时间 Td:减速转矩 td:减速时间 tc:循环时间
2.转速:最高转速 运转时电机的最高转速:大致为额定转速以下;(最高转速时需要注意转矩和温度的上升)
3.惯量:保持某种状态所需要的力

步进电机
步进电机:是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
1.步进电机的最大速度600~~~1200rpm 加速度一般设0.1s~~~1s
1.确定驱动机械结构 2.确定运动曲线 3.计算负荷转矩 4.计算负荷惯量 5.计算启动转矩 6.计算必须转矩 7.电机选型 8.选型电机验算 9.选型完成
选定电机:
1.负载惯量J/伺服电机惯量J< 10 (5倍以下为好)
2.在起动脉冲速度f1时,起动转矩>负载转矩T
3.在最大脉冲速度f0时,离开转矩(是不是必须转矩)>负载转矩T
步进选型计算见(KINCO 步进选型中12页的例题)
伺服选型计算见(松下伺服选型计算伺服电机选型方法)
1千克·米(kg·m)=9.8牛顿·米(N·m)。
脉冲当量(即运动精度)&= <0.05
(0.05为重复定位精度) 200为两相步进电机的脉冲数 m为细分数 200=360/1.8 i减速比1/x
C电机转一圈的周长
无减速比电机转一圈丝杠走一个导程
电机转速(r/s) V= P为脉冲频率
例: 已知齿轮减速器的传动比为1/16,步进电机步距角为1.5°,细分数为4细分,滚珠丝杠的基本导程为4mm。问:脉冲当量是多少?
脉冲当量是每一个脉冲滚珠丝杠移动的距离
滚珠丝杠导程为4mm,滚珠丝杠每转360°滚珠丝杠移动一个导程也就是4mm
那么每一度移动(4/360)mm
电机4细分,步距角为1.5°,则每一个脉冲,步进电动机转1.5/4
那么一个脉冲,通过减速比,则丝杠转动(1.5/4)*(1/16)度
那么每个脉冲滚珠丝杠移动距离(及脉冲当量)&:
&=(1.5/4)*(1/16)*(4/360)=0.0003mm或者&= <0.05
例: 必要脉冲数和驱动脉冲数速度计算的示例
下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。这是一个实际应用例子,可以更好的理解电机选型的计算方法。
1.1 驱动滚轴丝杆
如下图,2相步进电机(1.8°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下:

必要脉冲数=

100/10 × 360°/1.8°

×细分数m= [脉冲]

例: 精度要求0.01mm的雕刻机,导程5mm,步进电机驱动器一般用多少细分好呢?
如果确认是“精度”而不是“分辨率”的话,要考虑误差问题。
一,1)、你选择丝杠本身精度要高于0.01mm,
2)、其次电机细分只表示了分辨率,并不等同于电机精度。
假设你丝杠精度0.005mm,那么剩给电机的允许误差也就只有0.005mm了(暂不考虑其他误差因素)
0.005//5*360=0.36,表示你的电机精度要高于0.36度,所以你要选择绝对精度高于0.36度的电机。
二,至于细分,就简单了。
0.01/5*360=0.72;表示步进角0.72度时可达到0.01mm的分辨率
360/0.72=500;表示0.01mm分辨率时,电机一圈500步即可。
在实际使用时,你要尽可能选择细分高些,一方面提高运动平稳性,一方面也提供更高的步进分辨率。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-04-08
伺服电机的选择
伺服电机:伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移;可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。
闭环半闭环:格兰达的设备用伺服电机都是半闭环,只是编码器发出多少个脉冲,无法进行反馈值和目标值的比较;如是闭环则使用光栅尺进行反馈。 开环步进电机:则没有记忆发出多少个脉冲。
伺服:速度控制、位置控制、力矩控制
增量式伺服电机:是没有记忆功能,下次开始是从零开始;
绝对值伺服电机:具有记忆功能,下次开始是从上次停止位置开始。
伺服电机额定速度3000rpm,最大速度5000 rpm; 加速度一般设0.05 ~~ 0.5s
计算内容:
1.负载(有效)转矩T<伺服电机T的额定转矩
2.负载惯量J/伺服电机惯量J< 10 (5倍以下为好)
3.加、减速期间伺服电机要求的转矩 < 伺服电机的最大转矩
4.最大转速<电机额定转速
伺服电机:编码器分辨率2500puls/圈;则控制器发出2500个脉冲,电机转一圈。
1.确定机构部。 另确定各种机构零件(丝杠的长度、导程和带轮直径等)细节。
典型机构:滚珠丝杠机构、皮带传动机构、齿轮齿条机构等
2.确定运转模式。 (加减速时间、匀速时间、停止时间、循环时间、移动距离)
运转模式对电机的容量选择影响很大,加减速时间、停止时间尽量取大,就可以选择小容量电机
3.计算负载惯量J和惯量比(x kg.)。 根据结构形式计算惯量比。 负载惯量J/伺服电机惯量J< 10 单位(xkg.)
计算负载惯量后预选电机,计算惯量比
4.计算转速N【r/min】。 根据移动距离、加速时间ta、减速时间td、匀速时间tb计算电机转速。
计算最高速度Vmax x tax Vmax + tb x Vmax + x tdx Vmax = 移动距离 则得Vmax=0.334m/s(假设)
则最高转速:要转换成N【r/min】,
1)丝杆转1圈的导程为Ph=0.02m(假设) 最高转速Vmax=0.334m/s(假设
N = Vmax/Ph = 0.334/0.02=16.7(r/s)
= 16.7 x 60 = 1002(r/min)< 3000(电机额定转速)
2)带轮转1全周长=0.157m(假设) 最高转速Vmax=1.111(m/s)
N = Vmax/Ph = 1.111/0.157 = 7.08(r/s)
= 7.08 x 60 = 428.8 (r/min)< 3000(电机额定转速)
5.计算转矩T【N . m】。 根据负载惯量、加减速时间、匀速时间计算电机转矩。
计算移动转矩、加速转矩、减速转矩
确认最大转矩:加减速时转矩最大 < 电机最大转矩
确认有效转矩:有效(负载)转矩 < 电机额定转矩
6.选择电机。 选择能满足3~5项条件的电机。
1.转矩[N.m]:1)峰值转矩:运转过程中(主要是加减速)电机所需要的最大转矩;为电机最大转矩的80%以下。
2)移动转矩、停止时的保持转矩:电机长时间运行所需转矩;为电机额定转矩的80%以下。
3)有效转矩:运转、停止全过程所需转矩的平方平均值的单位时间数值;为电机额定转矩的80%以下。

Ta:加速转矩 ta:加速时间 Tf:移动转矩 tb:匀速时间 Td:减速转矩 td:减速时间 tc:循环时间
2.转速:最高转速 运转时电机的最高转速:大致为额定转速以下;(最高转速时需要注意转矩和温度的上升)
3.惯量:保持某种状态所需要的力

步进电机
步进电机:是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
1.步进电机的最大速度600~~~1200rpm 加速度一般设0.1s~~~1s
1.确定驱动机械结构 2.确定运动曲线 3.计算负荷转矩 4.计算负荷惯量 5.计算启动转矩 6.计算必须转矩 7.电机选型 8.选型电机验算 9.选型完成
选定电机:
1.负载惯量J/伺服电机惯量J< 10 (5倍以下为好)
2.在起动脉冲速度f1时,起动转矩>负载转矩T
3.在最大脉冲速度f0时,离开转矩(是不是必须转矩)>负载转矩T
步进选型计算见(KINCO 步进选型中12页的例题)
伺服选型计算见(松下伺服选型计算伺服电机选型方法)
1千克·米(kg·m)=9.8牛顿·米(N·m)。
脉冲当量(即运动精度)&= <0.05
(0.05为重复定位精度) 200为两相步进电机的脉冲数 m为细分数 200=360/1.8 i减速比1/x
C电机转一圈的周长
无减速比电机转一圈丝杠走一个导程
电机转速(r/s) V= P为脉冲频率
例: 已知齿轮减速器的传动比为1/16,步进电机步距角为1.5°,细分数为4细分,滚珠丝杠的基本导程为4mm。问:脉冲当量是多少?
脉冲当量是每一个脉冲滚珠丝杠移动的距离
滚珠丝杠导程为4mm,滚珠丝杠每转360°滚珠丝杠移动一个导程也就是4mm
那么每一度移动(4/360)mm
电机4细分,步距角为1.5°,则每一个脉冲,步进电动机转1.5/4
那么一个脉冲,通过减速比,则丝杠转动(1.5/4)*(1/16)度
那么每个脉冲滚珠丝杠移动距离(及脉冲当量)&:
&=(1.5/4)*(1/16)*(4/360)=0.0003mm或者&= <0.05
例: 必要脉冲数和驱动脉冲数速度计算的示例
下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。这是一个实际应用例子,可以更好的理解电机选型的计算方法。
1.1 驱动滚轴丝杆
如下图,2相步进电机(1.8°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下:

必要脉冲数=

100/10 × 360°/1.8°

×细分数m= [脉冲]

例: 精度要求0.01mm的雕刻机,导程5mm,步进电机驱动器一般用多少细分好呢?
如果确认是“精度”而不是“分辨率”的话,要考虑误差问题。
一,1)、你选择丝杠本身精度要高于0.01mm,
2)、其次电机细分只表示了分辨率,并不等同于电机精度。
假设你丝杠精度0.005mm,那么剩给电机的允许误差也就只有0.005mm了(暂不考虑其他误差因素)
0.005//5*360=0.36,表示你的电机精度要高于0.36度,所以你要选择绝对精度高于0.36度的电机。
二,至于细分,就简单了。
0.01/5*360=0.72;表示步进角0.72度时可达到0.01mm的分辨率
360/0.72=500;表示0.01mm分辨率时,电机一圈500步即可。
在实际使用时,你要尽可能选择细分高些,一方面提高运动平稳性,一方面也提供更高的步进分辨率。追问

您给相当详细 相当给力 真的有点看不懂 我选择的是三相异步电动机

您给相当详细 相当给力 真的有点看不懂 我选择的是三相异步电动机