如图1.在四边形ABCD中.AB=AD,∠B+∠D=180゜,E、F分别是边BC、CD上的点,且∠BAD=2∠EAF.(1)求证:

如图1.在四边形ABCD中.AB=AD,∠B+∠D=180゜,E、F分别是边BC、CD上的点,且∠BAD=2∠EAF.(1)求证:EF=BE+DF;(2)在(1)问中,若将△AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图2所示,试探究EF、BE、DF之间的数量关系.

解答:(1)证明:延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
AB=AD
∠ABM=∠D
BM=DF

∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
AE=AE
∠FAE=∠MAE
AF=AM

∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.

(2)解:EF、BE、DF之间的关系是EF=BE-DF,
理由是:在CB上截取BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ADC+∠ADF=180°,
∴∠ABC=∠ADF,
在△ABM和△ADF中,
AB=AD
∠B=∠ADF
BM=DF

∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF=2(∠EAD+∠DAF)=2(∠EAD+∠BAM)=∠EAF+(∠EAD+∠BAM)
又∵∠BAD=(∠BAM+∠EAD)+∠MAE
∴∠MAE=∠EAF在△FAE和△MAE中,
AE=AE
∠FAE=∠MAE
AF=AM

∴△FAE≌△MAE(SAS),
∴EF=EM=BE-BM=BE-DF,
即EF=BE-DF.
温馨提示:答案为网友推荐,仅供参考
第1个回答  2023-05-19

简单分析一下,详情如图所示

相似回答