全球构造及其动力学

如题所述

马宗晋

(中国地震局地质研究所,北京 100029)

摘要大陆与大洋的全球分布显示出南北向与东西向的双重非对称性。大地水准面高的分布格局具有一级与二级异常。全球活动构造可以分成3个一级构造系统:环太平洋构造系、洋中脊构造系和北半球大陆构造系。这些构造系同样表现出南北与东西非对称性。全球板块总体向西运动的机制可能与地壳、地幔、地核之间的角速度差异有关。这些全球尺度的构造特征也许起源于地球早期演化留下的内部构造非均匀性以及多种来源作用力的联合效应。

关键词 构造系统 大地水准面 非对称分布 动力加载

1 引言

现今地球动力学的基本任务之一,是利用可观察或可测量的现象与过程,对全球尺度的构造现象进行几何学与运动学的描述与概括,探索在全球尺度框架下构造系统的协调运动的规律性,从而获得统一的动力学解释。本文概述了在这几个方面的研究结果。

2 大陆与大洋的全球分布及大地水准面

2.1 大陆与大洋全球分布的双重非对称性

固体地球表面的基本特征是由大陆与大洋的地貌单元决定的。地球表面总面积的70%被大洋覆盖。三个主要大洋(太平洋、印度洋、大西洋)中,每一个的面积都超过欧亚大陆。太平洋是地球上最大的大洋与地貌单元,加上它的相邻海域,太平洋的面积占地球总面积的35.4%。因此,大洋地区的构造作用对全球构造格局的形成起了主要控制作用。

现在大陆在地球上的分布是不均匀的,全部大陆的65%位于北半球。北美、南美、非洲、亚洲和印度次大陆都是三角形,锐角朝南,它的北部相互连接、环聚在北极周围。所有陆地表面的大约81%位于北方的大陆半球,它的极点在西班牙(0°E,38°N);在这个半球上大陆占总面积的47%,大洋占53%。与其相反的南方大洋半球包含11%的大陆和89%的大洋,它的极点在新西兰。这是全球大陆与大洋分布的南北半球非对称性。

如果定义以经线180°为轴的半球是180°半球,以经线0°为轴的半球是0°半球;那么180。半球包含了太平洋的大部分和少量大陆,相当于大洋半球;而0°半球包含了地球的大部分陆地,相当于大陆半球。这是全球大陆与大洋分布的0°/180°(东—西)半球非对称性。

2.2 大地水准面高度

人造卫星轨道已提供了关于地球相对于球对称的大尺度偏离的很精确的证据,即卫星大地水准面。图1表示这个大地水准面的形态,它代表由卫星数据并结合地面重力测量得到的平衡椭球[4]。这张图的总特征是,南北高纬度地区具有负异常,大地水准面的最低点在南极(-110m)和北极(-60m和-70m)。正异常区集中在中低纬度带。这是一级异常分布格局。此外,中低纬度区还有正负异常带或槽沿北西向相间排列的特征。例如,新几内亚正异常带(+100m),印度洋负异常带(-60m),非洲西部正异常带(+50m),北太平洋负异常槽(-40m),这些都可从图1中看出,是重要的二级特征。

图1 根据18阶18次系数得到的大地水准面等值线

它表示相对于扁率为1/299.76的参考椭球的偏离[4]。图中数值单位为m

另一显著特征是,除非洲之外,北半球的大陆都是大地水准面低区,而南半球的大陆几乎都位于大地水准面高区。虽然大地水准面的大尺度特征与地表高程(大陆与大洋)没有明显相关性,但在一定程度上大地水准面反映出控制全球构造格局的深部地幔运动,影响大地水准面特征的质量异常位于上地幔几百千米深度[7]

3 全球构造系统的非对称性

根据全球地震分布及其运动学与动力学特征,可以把全球活动构造分为3个一级构造系统:①环太平洋构造系统,它以大洋岩石圈向大陆岩石圈的深俯冲为特征;②洋中脊构造系统,其标志是大洋岩石圈裂谷与转换断层的组合;③北半球大陆构造系统,它主要分布在北纬20°~50°的环形带上,具有大陆岩石圈的断层网络特征,形成4个相似的地震构造区域(图2)。

如上所述,为描述方便,定义以经线180°为轴的半球为180°半球,以经线0°为轴的半球为0°半球。于是,几乎整个环太平洋构造系统都位于180°半球的外环上。洋中脊裂谷系统,看起来像是残缺的灯笼骨架,由三条经向洋中脊及一条环南极的纬向洋中脊连接组成。按长度计,85%的洋脊轴位于南半球,这与南半球以大洋为主相联系,表明南半球相对较热并略有膨胀。若从经向方向看,三条洋中脊与大陆裂谷相对地集中在0°半球上,表明它是一个次级膨胀半球。环太平洋深俯冲带的几何形状表明0°半球向180°半球仰冲。大陆构造系统的主体是北纬20°~50°范围的陆内造山带,形成一个宽阔的大陆活动构造纬向环。它的区域应力场表明,这个纬向带的构造变形主要由两个作用力决定,一个是南北向挤压力,另一个是由螺旋状地球表面显示的左旋扭动力[5]

图2 全球构造系统

1—环太平洋构造系统;2—大陆构造系统;3—洋中脊构造系统;4—经向构造系统;5—断层

在球坐标系中对大陆构造系统与环南极洋中脊作比较是有意义的。这两个构造系都是纬向构造带,环南极洋中脊位于略有膨胀的南半球,而大陆构造系位于略有收缩的北半球。这个对比表明南北半球在热状态方面的非对称性。另一个重要现象是近南北向(经向)构造带两侧的非对称性。例如,西太平洋具有边缘构造特征,即完整的海沟、岛弧和弧后盆地系统,西倾的俯冲板具有较大的倾角(一般超过45°)。而东太平洋的构造相对较简单,没有沿边缘的弧后盆地,东倾的俯冲板倾角较小(一般小于45°),但东太平洋洋底板条构造具有微小差异的东向运动,造成了科迪勒拉造山带及地震与火山分布的有规律的分段性。在洋中脊两侧,由洋底磁异常条带显示的洋脊扩张速率,经常是一侧较快而另一侧较慢。在北半球的纬向大陆构造带内,可以看出有4个具有类似构造变形格局的地震区,它们都被中央经向轴分为东西两个半区。西半区主要是造山带与高原,地震活动性较强,活动构造以NW走向为主;而东半区主要是平原和丘陵,地震活动性较弱,活动构造主要是NE走向(图3)。这些现象表明,以巨型经向构造带为轴的东西非对称性,是全球尺度的构造特征。

图3 北半球大陆构造及其地球动力学背景

4 动力学讨论

4.1 板块的西向运动与地壳、地幔、地核之间的角速度差异

全球相对板块运动模型NUVEL-1[1]表明,全球岩石圈板块总体上向西运动,板块之间有明显的速度差异。当西边的板块运动比东边的板块运动快时,出现像洋中脊和大陆裂谷那样的张性破裂。除了东太平洋隆起两边朝相反方向运动外,其他板块的运动都是由西向运动的速度差异决定的。大多数洋中脊都是南北走向,与板块总体的西向运动相垂直。当西边的板块运动比东边的板块慢时,就会出现碰撞或俯冲。可能有许多因素决定了板块西向运动的速度差异:①板块底部的起伏及岩石圈与下伏地幔间耦合强度的差异;②板块上表面的粗糙度,它同大陆地形与大气层运动之间摩擦阻力的差异相关;③地球自转突然变化时板块质量产生的惯性运动的差异;④地幔上涌引起的、作用于板块西向运动上的拉张力;⑤固体潮产生的对不同板块不同的滞后反作用力。这些可能的因素与大尺度的地幔对流无关。

板块运动模型的重要推论之一,是岩石圈与下伏地幔相脱离[2]。因此,板块向西运动相当于地幔向西运动,这个相对运动的速率大约为5~10cm/a。还有地幔与地核之间的相对运动。自1580年以来400多年基本地磁场的记录表明,它有长期的向西漂移,平均速率大约0.2°/a[3,7]。假定产生地磁场的外核相对于内核是固定的,那么在地球表面观测到的地磁场向西漂移意味着地壳的自转比地核快(因为地球自西向东旋转),但比地幔慢(考虑到板块相对于下伏地幔的西向运动)。由上述讨论,板块与下伏地幔之间的相对运动似乎是确定的。从另一个参考系看,地幔的自转比岩石圈板块快,可说明上述经向构造带两侧的非对称性。NUVEL-1板块运动模型的图还表明,北半球的西向运动比南半球快。换句话说,北半球岩石圈的自转比南半球慢。因此在赤道附近的低纬度带形成左旋扭力。这个动力环境直接使印度板块、阿拉伯板块和非洲板块从西南向东北斜向推挤,造成三个弧形陆内山系,即阿尔卑斯山、扎格罗斯山和喜马拉雅山。不仅在低纬度带,在中、高纬度带也能找到南北半球之间西向运动差异的证据,在大地水准面高度图(图1)中的北西走向带的存在就是一个例子。南北半球之间全球尺度的扭动必然产生NE-SW向的压扭,它可能与印度-澳大利亚板块较大速率的NNE向运动以及加拿大西北的SSW向运动有关(图3)。

4.2 导致地球运动的多种力源

根据以壳、幔、核表示的地球层状结构以及行星起源的知识,推测地球40亿年前经历了下列早期演化过程:宇宙云尘吸积,地球热积累(温度高达1000℃),分异与铁元素地核形成,因温度升高而普遍熔融,密度分层,初始地球形成。显然,在这个演化过程中重力与热的共同作用占优势。但应当记住,地球的早期演化与形成是在较高速率的地球自转状态下进行的。在4.4亿年前的志留纪,一年是407天,由此估计地球的自转相当于每年700天。因此,地球在熔融状态下的高速自转可能形成某些元素的侧向分异,如同在太阳与土星表面看到的带状结构。地球的这个早期结构与力学效应也许在最古老的岩石分布中留下某些痕迹。至少,在一些地盾地区的老岩石地层中有明显的纬向构造,以后才是经向与斜向构造带。这种古老岩带格局也许与地球的早期地质历史有关。

行星的南北非对称性具有广泛的表现。甚至在盘状银河系的上下,星体的数量与分布也是不对称的。有理由怀疑,银河系域外像潮汐力那样的定向作用力可能产生某种偏心效应,使星体的质量中心与其几何中心偏离。如果这个推论成立,那么地球的演化与运动自开始就处于包括重力、热、自转、潮汐等多种作用力的共同影响下,地球的质量中心可能偏向北半球一边,而它的热中心偏向南半球一边。这个配置决定了一系列全球非对称构造。

地球结构、构造与运动的目前状态也是由上述多种力的共同作用决定的。因为地球热状态和重力场的静态非对称分布决定了地球的形状、三大构造系统的非对称分布以及半球膨胀与收缩的摆动式调整运动,驱动地球构造运动的巨大能量很可能是来自下地幔的热柱以及带有重力调整的上地幔分层结构的上涌。应当考虑到热-重力作用过程中地球自转的定向性质以及由于自转速度改变产生的惯性力,它们会决定一系列构造和结构的方向,正像汽车方向盘的作用。此外,地球自转速度的变化还控制着地球扁率的改变以及它对向极和离极运动的导向效应,特别是控制因自转角速度差异而引起的壳、幔、核之间的相对运动。最后还应提到,以潮汐力为代表的不同周期的宇宙因素,甚至还有巨型陨石的冲击,都会对由重力、热力、自转力联合作用下形成的应力场产生长期与短期的调节与激发作用,这些宇宙因素也能触发像地震、火山和岩浆上涌这样的突然性过程。

致谢 本项研究得到现代地壳运动及其动力学项目和国家自然科学基金(49272139)资助。

参考文献

[1]C.Demets,R.G.Gordon,D.F.Argus and S.Stein.Current plate motions.Geophys.J.Int.,1990,101:425~478.

[2]C.Doglioni.The global tectonic pattern.J.Geodynamics,1990,12:21~38.

[3]傅承义.地球十讲.北京:科学出版社,1976.

[4]B.M.Gaposchikin.Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations froms atellite and terrestial data.J.Geophys.Res.,1974,79:5377~5411.

[5]Ma Zongjin and Chen Qiang.Global seismotectonic systems and Earth's asymmetry.Science in China(B),1990,33(1):121~128.

[6]F.Press and R.Siever.Earth.W.H.Freeman and Company,San Francisco,1982.

[7]F.D.Stacey.Physics of the Earth.John Wiely &.Sons,New York,1977.

温馨提示:答案为网友推荐,仅供参考
相似回答