1、 方差已知时的均值估计
z.test<-function(x,n,sigma,a,u0,alt){
result<-list()
mean<-mean(x)
result$interval<-c(mean-sigma*qnorm(1-a/2,0,1)/sqrt(n),mean+sigma*qnorm(1-a/2,0,1)/sqrt(n))
z<-(mean-u0)/(sigma/sqrt(n))
p<-pnorm(z,lower.tail=F) #函数笔记:lower.tail是真的话,得出的就是X<=x的
分位数,为假的话就是用P(X>x)的办法寻找这个值。一般我们用默认的真就可以了
result$z<-z
result$p.value<-p #通过
P值判定
参数估计效果
if(alt==2)
reslut$p.value<-2*pnorm(abs(z),lower.tail=F)
else
reslut$p.value<-pnorm(z)
reslut#函数笔记:如果函数的结果需要有多个
返回值,可以创建一个list(),并返回该对象。也可以用return()函数,设定返回值。但是一个函数的返回的对象只有一个。
}
2、 方差未知时的均值估计
在小样本中,我们通常使用R的内置函数t.test()调用格式:
t.test(x, y = NULL,
alternative = c("two.sided", "less","greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)
对于大样本,我们可以使用
样本方差代替总体方差,使用z.test()处理
3、 方差的区间估计
chisq.var.test<-function(x,n,a,alt=2,sigma0=1)
{
result<-list()
v<-var(x)
result$interval<-c((n-1)*v/qchisq(1-a/2,n-1,lower.tail=T),(n-1)*v/qchisq(a/2,n-1,lower.tail=T))
chi2<-(n-1)*v/sigma0
result$chi2<-chi2
p<-pchisq(chi2,n-1)
if(alt==2)
result$p.value<-2*min(pchisq(chi2,n-1),pchisq(chi2,n-1,lower.tail=F))
else
result$p.value<-pchisq(chi2,n-1,lower.tail=F)
result
}