对多重共线性的两点认识: ①在实际中,多重共线性是一个程度问题而不是有无的问题,有意义的区分不在于有和无,而在于多重共线性的程度。
②多重共线性是针对固定的解释变量而言,是一种样本的特征,而非总体的特征。 消除多重共线性的方法: 1.增加样本容量 2.利用先验信息改变 3.删除不必要的解释变量:参数的约束形式 4.其它方法:逐步回归法,岭回归(ridge regression),主成分分析(principal components ). 这些方法spss都可以做的,你在数据分析的子菜单下可以找到相应的做法。
删除不必要的方法的时候,最好使用一下逐步回归法,这样比较科学一点。 主成分分析的方法使用比较简单科学,本人介意用该方法。
温馨提示:答案为网友推荐,仅供参考