光是怎么产生的?

如题所述

物体的发光方式通常可分成二类,即热光与冷光。所谓热光又称之谓热辐射,是指物质在高温下发出的热。在热辐射的过程中,特内部的能量并不改变,通过加热使辐射得以进行下去,低温时辐射红外光、高温时变成白光。众所周知,当钨丝在真空式惰性气氛中加热至很高的温度,即会发出灼眼的白光。其实,太阳光就是一种最为常见的白光,三棱镜可将太阳光分解成上述的七种颜色,实验已证明,只要采用其中的蓝、绿、红三种颜色,即可合成自然界中所有色彩,包括白色的光,我们通常将蓝、绿、红三种颜色称之为三原色。

  冷光是从某种能源在较低温度时所发出的光。发冷光时,某个原子的一个电子受外力作用从基态激发到较高的能态。由于这种状态是不稳定的,该电子通常以光的形式将能量释放出来,回到基态。由于这种发光过程不伴随物体的加热,因此将这种形式的光称之为冷光。按物质的种类与激发的方式不同,冷光可分为各种生物发光、化学发光、光致发光、阴极射线发光、场致发光、电致发光等多种类别。萤火虫、荧光粉、日光灯、EL发光、LED发光等均是一些典型的冷光光源。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-12-30

光是什么?是怎么产生的呢?

第2个回答  推荐于2018-03-13
光的产生可以分为三类:
第一类是热效应产生的光。太阳光就是很好的例子,因为周围环境比太阳温度低,为了达到热平衡,太阳会一直以电磁波的形式释放能量,直到周围的温度和它一样。
第二类是原子跃迁发光。荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光。此外霓虹灯的原理也是一样。原子发光具有独自的特征谱线。科学家经常利用这个原理鉴别元素种类。
第三类是物质内部带电粒子加速运动时所产生的光。譬如,同步加速器(synchrotron)工作时发出的同步辐射光,同时携带有强大的能量。另外,原子炉(核反应堆)发出的淡蓝色微光(切伦科夫辐射)也属于这种。
光是辐射,是电磁波,是光子束,是能量,是质量(根据E=mc^2)。光源发出光,是因为光源中电子获得额外能量。如果能量不足以使其跃迁(jump)到更外层的轨道,电子就会进行加速运动,并以波的形式释放能量;反之,电子跃迁。如果跃迁之后刚好填补了所在轨道的空位,从激发态到达稳定态,电子就不动了;反之,电子会再次跃迁回之前的轨道,并且以波的形式释放能量。
简单地说,光是沿射线传播的,光的传播也不需要任何介质,因为电磁波的传播不需要介质。但是,光在介质中传播时,由于光受到介质的相互作用,其传播路径遇到光滑的物体会发生偏折,产生反射与折射的现象。另外,根据广义相对论,光在大质量物体附近传播时,由于受到该物体强引力场的影响,光的传播路径也会发生相应的偏折。本回答被网友采纳
第3个回答  2013-11-02
原子的核外电子也是在不停地运转着,运转着的电子也会伴生着电磁波。上述物质,岩浆、铁水、火焰、灯丝等高温物质的发光,就来自于高温物质核外电子跃迁运动所伴生的电磁波,也就是高温物质运转着的核外电子跃迁所辐射的电磁波。
当然,常温下物质的核外电子也是在运转着,只是速率较低,这时跃迁辐射的电磁波频率大多在红外线范畴,所涉及的是传热,不在本文讨论。
电子的运动分为线性运动和振动,核外电子的绕核运动及在导电时电子的流动是电子的线性运动,线性运动所伴生电磁波的宏观表现是磁场。此外,与发光息息相关的是电子的振动。当温度较高时,电子绕核运转同时的跃迁运动是一种振动;电子在强磁场或电场作用下也会发生振动,电子振动所伴生的电磁波的宏观表现是不同频率的光。
于是,光是从哪里来的?光是怎样形成的?就有了答案:电子在运动时伴生着电磁波,光的形成是由于电子振动所伴生的电磁波。而不是所谓的光子。
光源中的光来自于电子的振动,电子振动所伴生的电磁波辐射形成了光波,电子振动的频率构成了光波的频率,大量电子振动所伴生的电磁波辐射形成了光源。

电子振动由两种原因所引发,一是高温物质核外电子的跃迁所引发的振动,这种振动需要物质的温度大大高于环境温度,运转速率很高的核外电子跃迁辐射才能达到可见光的频率,我们把这种高温物质核外电子的跃迁辐射所形成发光的光源叫热光源。二是电子在磁场或电场的作用下引发的受激振动,这样的电子振动与温度无关、与核外电子运转速率无关,我们把这种不需要高温而使电子振动所形成辐射的光源叫冷光源。

热光源 热光源是高温物质核外电子跃迁运动所伴生的电磁波辐射。
当物质温度高于环境温度,其核外电子的速率升高,速率较高的核外电子就发生跃迁运动(绕核运转时降低速率的振动),向外辐射一定频率的电磁波。物质的温度越高,核外电子的速率就高,电子跃迁所辐射的频率就越高。于是我们就看到了热物质的发光。如:火光、烛光、白炽灯的灯光,以及前述钢铁、玻璃、石头等烧红时的发光。
火光为什么是红的?因为这些物质的温度在800-1000℃左右,核外电子的速率在红色、橙色频率附近,所以核外电子跃迁时辐射出橙红色的光。而白炽灯的灯丝温度在2500℃,其光色显得白亮(其中多了橙、黄、绿的成分)。热光源一般是多种频率共存的,除了橙光、红光,还有大量的红外波、微波,这些波我们的眼睛看不见,所以热光源的发光效率很低(白炽灯的发光效率仅有7%)。

冷光源 冷光源是在电场、磁场作用下电子受激振动所伴生的高频率电磁波。这里,电子是指自然界游离电子及原子的核外层电子(非跃迁运动)。
因为冷光源的发光是电子在磁场或电场作用下发生振动所伴生的电磁波,这种高频振动与电子绕核运转的速率无关、与物质的温度无关,仅仅与电子振动的频率、振幅相关,发光时不会伴有强烈的发热,不会伴有大量的红外波、微波。所以发光效率高,能节约大量的能源。如:日光灯、节能灯、极光、萤火虫的发光、半导体发光(LED)等。
日光灯:日光灯的光是在高电压电场作用下,电子穿过水银蒸汽和氖气混合气体时使得这些气体表层电子发生强烈的振动,电子的高频振动伴生着紫外线(高频电磁波),紫外线在管壁的荧光物质作用下,形成了近似日光的明亮灯光。由于是表层电子发生振动所伴生的紫外电磁波,并没有太大地提高气体的核外电子绕核运转的速率,所以气体的温度没有大幅度的升高,只是在电子经过气体表面时气体核外电子有一些保护性的升温(约50℃),所以人们把日光灯叫做冷光源,其发光效率较高。
霓虹灯:霓虹灯的发光原理与日光灯相似,也是在高电压的作用下,电子穿过气体,引起气体表层电子发生振动而发光。如果在灯管中充氖气则发红光,充氩气则发紫光,充水银蒸汽则发灰绿色的光,于是城市的夜空就有了这五颜六色的光彩闪耀。不同的光彩是不同频率的电磁波,霓虹灯向我们昭示:不同的气体其核外电子的速率是各不相同的,其振动的频率是稳定的。
极光:极光是在地球两极附近大自然所发出的彩色天光。极光发生在100至300公里的高空,电离层游离电子在运动时所伴生的磁场与地球磁场相互作用,使电子发生激烈振动而伴生的电磁波。极光也是冷光,极光的发生与高空电子流运动的方向、速度与地球磁力线的相互作用相关。所以极光能呈现多种频率、绚丽多彩。并能发生流光溢彩的色彩变换。
今后,人们能模拟极光形成原理,利用磁场与电子流相互作用,使电子振动发光,制成发光效率很高的人造极光光源。
半导体发光(LED):近年来,半导体发光以发光效率高(90%)、能有各种色彩、响应快、能制成各种形状而深受人们的青睐。
半导体是在4价、5价晶体中通过参杂、组合而具有特殊效能的电路原件,如二极管、三极管,LED就是一种发光二极管。
发光二极管的工艺是:在纯的半导体晶体中参入少量的3价元素,形成P型(缺少电子或带正电型)晶体;在纯的半导体晶体中参入少量的高价电子元素,形成N型(多出电子或带负电型)晶体;在P型晶体与N型晶体结合处就形成PN结。
当电流从N流向P,在PN结处因有多出和缺少电子相连,形成了电子运动的紊乱,一些电子因外来电子的干扰而发生振动。电子的低频振动发出红外线,半导体发热;电子的高频振动发出电磁波使得半导体发光。
依照参杂的材料不同或电压的高低,发光二极管能发出不同频率(色彩)的亮光。因为这种电子的振动不是跃迁运动,所以发光二极管属冷光源,发光效率很高,能制成节能的照明灯。而且这种发光能随电流的变化而立即改变,响应达到毫秒级,因而能制成高质量的平板显示器。
综上所述,自然界各种不同频率的光都是电子振动、辐射所致,“光子”之说是缺乏依据的,不管是热光源、还是冷光源都是电子振动伴生的电磁波的宏观表现,大自然就是这样用简单和效率构成了光采的世界。
相似回答