第1个回答 2019-05-11
sysuse auto, clear
summarize mpg weight
//summarize 后面可以接一个或多个变量,个数 均值 最小最大值
summarize mpg, detail
//会有关于数据其他的统计指标
help summarize
tabulate mpg, sort
tabulate foreign
//最好是分类变量去tabulate,展示各个种类有多少个,占多大比例(离散的)
help tabulate
sysuse nlsw88, clear
tab occ
//不同职业的样本在我的数据库里面分别有多少个,比例大小,总的样本数量是多少
tab industry
sysuse auto, clear
tabstat mpg price weight rep78 , stat(n mean sd min median max) c(s)
//c(s)是转置过来这个矩阵,默认阅读方式是:列是统计指标,行是变量名称
help tabstat
//下划线是代表可以简写,只写c(s)
//可以规定format 总长度多少个单位,小数点前面,后面有多少个单位,统一成一个格式
tabstat mpg price weight rep78 , by(foreign) stat(n mean sd min median max) c(s)
//by是以什么分类展示
//输出表格(不要复制):
ssc install logout
logout, save(summarize) tex word excel dec(3) replace: tabstat mpg price weight rep78 , stat(n mean sd min median max) column(s) long format
//不建议导出成tex word 因为在Excel还要进一步编辑,xml格式的可以在excel打开 rtf是可以从word打开 就可以应用在论文里面了。replace替换原来的 dec(3)代表小数点后统一保留三位数,replace后面与之前一模一样 ,column是列
logout, save(summarize) tex word excel dec(3) replace: tabstat mpg price weight rep78 , by(foreign) stat(n mean sd min median max) c(s)
use nei_sample.dta, clear
describe
duplicates tag newid year, gen(dup)
edit newid year if dup >= 195
duplicates drop newid year, force
help merge
duplicates drop newid year, force
//一个地方会有n个企业
merge m:1 fips year using "county_na.dta"
//根据county的代码和时间调用
//有三部分的merge,merge=1和2是不需要的地方 只保留3(matched) 因为没有企业的观测值(0),而mrege=1则是有企业的观测值(1),而merge=2没有政策的观测值(0)(观测到了企业污染,却没有观察到关于政策的变量)
//我们关心企业所在的地区是否有环境政策
//做一个最简单的回归,政策对污染的影响:(regress)
foreach v of varlist reg_* {
replace `v'= 0 if `v' == .
}
reg co reg_co
gen lco = ln(co)
reg lco reg_co
//有0的问题
//add a set of dummies(虚拟变量), tear , industry, county
gen fips_st = substr(fips,1,2)
//state(取fips编号的前两位)
gen sic2 = substr(sic,1,2)
//industry
gen sic1 = substr(sic2,1,1)
keep if sic1 == "2" | sic == "3"
//manufacturing only
gen lco = log(co)
//generate log
reg lco reg_co
//reg_co代表政府有无监管,有就是1(非常不准)表中的_cons代表截距
xi: reg lco reg_co i.year
//按照年份,每年加一个虚拟变量,是这一年就是一
//with year FE (根据每一年不一样回归 )
bys year: egen id_sum = count(newid)
//?
xi : reg lco reg_co id_sum i.year
//with year FE, multicolinearity
//如果观测值是1996年的,那么iyear1996=1,这个统一的因素会影响所有的企业(宏观经济因素,所有企业都受影响),今年的这个企业和明年的这个企业外部环境是不一样的,是什么不重要,要capture这个东西
xi : reg lco reg_co i.year i.sic2
//with industry FE(不同产业的影响)
xi : reg lco reg_co i.year i.sic2 i.fips_st
//with state FE(省政府对环境保护的压力的影响)
xi : reg lco reg_co i.year i.sic2 i.fips
//with county FE
xtset newid year
//set panelex
xi: reg lco reg_co i.newid
//通过添加dummy
xi: xtreg lco reg_co, fe
//先进行差分 (常用)
//这两行的结果相同
xi: xtreg lco reg_co i.year , fe
//year
xi: xtreg lco reg_co i.year i.fips_st, fe
//state fe
xi: xtreg lco reg_co i.year i.sic2, fe
//industry fe
//下标都是固定效益 用希腊字母带下标 c是位置 j是行业 t为第t年的宏观经济形势/技术进步(系统性) i表示企业自身的固定效益,是观察不到的个体特征因素(有些企业管理水平天生高,低)
sort newid sic2
by newid: gen newsic2 = sic2[_N]
xi: xtreg lco reg_co i.newsic2, fe
//企业不更改行业属性
//two-way fised effects with firm fixed effects
xi:xtreg lco reg_co i.teay*i.newsic2, fe
//industry-year FE
xi:xtreg lco reg_co i.teay*i.fips_st, fe
findit outreg2
qui xi: xtreg lco reg_co i.year , fe
outreg2 using result.xls, excel keep(reg_co) dec(3) addtext(Firm FE, Y,Year FE,Y,State-Year FE,n,Industry-Year FE,n)
//dec(3)代表小数点后3位数 导出成excel格式
qui xi: xtreg lco reg_co i.year*i.sic2 , fe
outreg2 using result.xls, excel keep(reg_co) dec(3) addtext(Firm FE, Y,Year FE,Y,State-Year FE,n,Industry-Year FE,n)
qui xi: xtreg lco reg_co i.year*i.sic2 i.year*i.fips_st , fe
outreg2 using result.xls, excel keep(reg_co) dec(3) addtext(Firm FE, Y,Year FE,Y,State-Year FE,n,Industry-Year FE,n)
17 本溪沈阳 任延昊 2019/5/6 20:14:42
cd /Victor/stata
//电子地图:
findit spmap
help spmap
unicode encoding set gb18030
unicode translate "china_label.dta"
//必须先清零数据,然后运行一遍路径名 才能运行这两行命令
use "china_label.dta", clear
//example 1
use china_label, clear
gen xx = uniform()
spmap xx using "china_map.dta", id(id) title("中国地图",size(*0.8)) label(label(ename) xcoord(x_coord) ycoord(y_coord) size(*.8)) plotregion(icolor(stone)) graphregion(icolor(stone)) fc(Greens) clnumber(8) oc(white ..) osize(medthin ..)
//clnumbers 代表8种不同的绿色
//example 2
tab name
replace name = subinstr(name, "省", "", .)
replace name = subinstr(name, "市", "", .)
replace name = subinstr(name, "回族自治区", "", .)
replace name = subinstr(name, "壮族自治区", "", .)
replace name = subinstr(name, "特别行政区", "", .)
replace name = subinstr(name, "自治区", "", .)
replace name = subinstr(name, "维吾尔", "", .)
tab name
//改名字
foreach x of numlist 1/5{
gen num `x'=uniform()
}
format x %9.3g
foreach x of numlist 1/5{
spmap `x' using "china_map.dta",id(id) title("中国地图", size(*0.8)) label(label(ename) xcoord(x_coord) ycoord(y_coord) size(*.8)) plotregion(icolor(stone)) graphregion(icolor(stone)) fc(Greens) clnumber(8) oc(white ..) osize(medthin ..) graph export "china0`x'.png", replace
}
cd /Victor/stata
//电子地图:
findit spmap
help spmap
unicode encoding set gb18030
unicode translate "china_label.dta"
//必须先清零数据,然后运行一遍路径名 才能运行这两行命令
use "china_label.dta", clear
//example 1
use china_label, clear
gen xx = uniform()
spmap xx using "china_map.dta", id(id) title("中国地图",size(*0.8)) label(label(ename) xcoord(x_coord) ycoord(y_coord) size(*.8)) plotregion(icolor(stone)) graphregion(icolor(stone)) fc(Greens) clnumber(8) oc(white ..) osize(medthin ..)
//clnumbers 代表8种不同的绿色
//example 2
tab name
replace name = subinstr(name, "省", "", .)
replace name = subinstr(name, "市", "", .)
replace name = subinstr(name, "回族自治区", "", .)
replace name = subinstr(name, "壮族自治区", "", .)
replace name = subinstr(name, "特别行政区", "", .)
replace name = subinstr(name, "自治区", "", .)
replace name = subinstr(name, "维吾尔", "", .)
tab name
//改名字
foreach x of numlist 1/5{
gen num `x'=uniform()
}
format x %9.3g
foreach x of numlist 1/5{
spmap `x' using "china_map.dta",id(id) title("中国地图", size(*0.8)) label(label(ename) xcoord(x_coord) ycoord(y_coord) size(*.8)) plotregion(icolor(stone)) graphregion(icolor(stone)) fc(Greens) clnumber(8) oc(white ..) osize(medthin ..) graph export "china0`x'.png", replace
}