把水加热到105℃真的会结冰吗?

如题所述

水是生命之源,在地球上有着举足轻重的地位,地球上71%面积是海水,人体中水分也占到了60%-70%,在一个标准大气压下,水的熔点是0℃,沸点是100℃,超过100℃水就会气化,关于水的特性我们早已熟知。但是科学家发现了水的一个反物理特性,水在105摄氏度的高温下竟然会结冰,这个结果也让很多学者跌破了眼镜。

当科学家把碳纳米管浸入含有水的容器中时,发现了几个的水分子可以钻入纳米管中,当加热碳纳米管时,内部的水分子呈现出反常的物理特性,竟然结冰堵住了纳米管!科学家利用振动光谱成像技术观察了水分子在内部的运动情况,发现这种“冰”的结构和一般的冰不同,是水分子与碳纳米管之间形成的一种特殊的晶体结构,这里我们也把它称之为冰。

并且不同直径的碳纳米管,水的结冰温度都不同。纳米管的直径越小,水分子变成冰柱所需要的温度就越高。当科学家把单个水分子(直径大约是0.4纳米左右),放入直径只有1.05纳米的碳纳米管中时,水会在105度结冰,而当碳纳米管的直径变成了2纳米时,水分子居然在零下83摄氏度才会结冰。碳纳米管的直径哪怕只相差0.1纳米,水的结冰温度都会相差20摄氏度

或许我们可以类比成宏观和微观世界微粒的特性,就像物理学中牛顿的经典力学只适用于宏观低速的状态,而在微观世界就不再适用,而是有另一套物理体系。水分子的这种神奇特性也让科学家难以解释。

为了在现实中得到应用,美国科学家利用强脉冲中子源来进行试验,并且改进了碳纳米管的结构,让水分子在碳纳米管内永远不会结冰,即使是在绝对零度,零下273.15摄氏度都不会结冰。不管是哪种碳纳米管的结构,只要能够广泛应用于飞机和航天材料都是百利而无一害。

飞机在高空的低温环境下飞行,经常会面临结冰的问题,飞机引擎和机身外壳如果能使用碳纳米管制造的材料,不仅可以减轻机身重量,提高稳固性,还可以抵抗低温环境,减少损耗。

科学家欲通过控制碳纳米管的结构和直径大小来控制水分子的冰点,载人火箭发射到回归地球的过程中,必定过经历外壳高温的情况,可以在航天材料中混合直径1.05纳米的碳纳米管,温度超过105摄氏度就会和空气中少量的水分子一起结冰,以此来降低抵消外壳的高温,大大增加安全性。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2021-06-15

在我们一般的认知中,水有三种状态:固态(冰)、液态(水)、气态(水蒸汽)。而一般情况下,水会在100摄氏度时就会汽化,成为水蒸汽,这也是常识性的东西了。


那说水在105摄氏度时会结成冰,那不是违反了物理定律了么?

105摄氏度时确实出现了水结成冰的现象,但是这个是有条件的,而且这时候结成的冰和日常我们所说零度时的固态冰并不一样,这时结成的是晶并不是冰。

详细得看一下这个实验了。

这项研究应该是2018年年国外科学团队发现的,当把直径只有1.8纳米的管状碳纳米管放入盛满水的容器中时,让直径只有0.5纳米的单个水分子进入这个纳米管中,然后加热至105摄氏度时竟然出现了纳米管凝固被堵塞,并且这个凝固现象中实际上其中的水分子温度并没有降低,但水分子却形成了和冰结构类似的固体。

这一现象也一反常态,水加热是不可能会凝固或者结冰的,但是在某种特性的情况:几个水分子和狭小的纳米容器内可以实现,但目前还并不清楚,这个凝固的状态和碳纳米管本身有没有发生反应。


那类似的反物理现象还有没有其他的例子呢?

光学黑洞
顾名思义,所有的光在遇到这个器件的时候,都有去无回。
光学黑洞实际上是用电磁材料来控制电磁波的路径,来模拟光掉进黑洞时的路径变化。从这个角度来说还是挺有意思的。



负折射率材料
负折射率材料在上个世纪还一直以为是不存在的,现在都造出来了。一般实现负折射介质是采用超材料,当然光子晶体也是可以的。


如果对超材料感兴趣可以点击这里,我对它做了比较详细的介绍:
地铁内超高速 Wi-Fi 中的超材料到底是什么,怎样 「剪裁」电磁波?

负折射率材料有很多反直观的特性,比如逆契伦科夫辐射。
什么是契伦科夫辐射?
契伦科夫辐射一般来说是物体运动速度大于介质里面波的传播速度。这里的波可以是电磁波,声波,水波等。

所以摩托艇在水面滑行产生的水纹就是契伦科夫辐射。飞机超音速飞行时引发的音爆也是由于契伦科夫辐射。




在电磁波中:
对于折射率为2的介质,电磁波的极限速度为0.5c(c是电磁波在真空中的速度),如果一个高能粒子以0.6c的速度射入这种介质,就会产生所谓的契伦科夫辐射。所以应该是这样的:



注意,在这里能量传播方向跟波的传播方向相同。


如果将材料替换为负折射率材料,那么很神奇的事情发生了:



可以看到能量传播方向跟波的传播方向正好相反。


还有逆多普勒效应,就是电磁波波源离你远去的时候,你发现它的频率在增加。

利用负折射率材料还可以制作完美的透镜,电磁波携带的所有的信息都可以恢复,没有衍射极限的问题了,也就是超透镜。

光子晶体
光子晶体是模拟固体物理中的晶体得到的。这就很神奇了,它跟晶体一样有禁带。
首先看看光子晶体怎么实现,它是这样的:



蓝色的普通的介质,比如介电常数为8的材料,其他的是空气。
照理来说,这种材料是不可以完全阻挡电磁波传播的,但是如果它排成这种周期结构,在某些频率下,它就可以禁止电磁波传播。所以就可以用来束缚电磁波,做成波导:



有人问这东西有什么用,波导不是可以用金属来做吗。但是在光频道,金属就不再是金属了,它们变成了普通的介质。所以光子晶体具有做光器件的潜力。它还可以做成三维的,就变成了类似光纤的东西。注意它跟光纤不一样,光子晶体是在亚波长尺度调控光波。

本回答被网友采纳
第2个回答  2019-10-11
水加热到105℃应该不会结冰。谁都沸点是100℃超过100℃会汽化。。本回答被网友采纳
第3个回答  2019-10-10
水的沸点是100℃,超过100℃水就会气化,所以并不会变成冰
第4个回答  2019-10-10
然而,科学家在特殊容器里将温度加热到105℃的时候,发现水竟然“结冰”,把纳米管堵住了。和零度以下结成的冰结构不同,105℃时结成的冰是一种特殊的晶体结构,科学家把它称为冰是完全合理的。
相似回答