直流伺服电机的速度和位置控制原理是什么?能说的详细一些吗

伺服系统中采用增量编码器,PID控制器

运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。

    1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。 3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。位置环的反馈也来自于编码器。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。     谈谈PID各自对差值调节对系统的影响: 1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。。。增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。。。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2010-06-12
永磁同步电机伺服系统离不开对转子位置(或磁场)的检测和初始定位。只有检测初始转子实际空间位置后,控制系统才能正常工作。如果不能精确估算初始转子的位置,电机的起动转矩减弱,出现很大震动,且电机有暂时反向旋转的可能。准确可靠的转子初始位置检测装置是永磁同步电机伺服系统正常启动的必要条件.
系统第一次上电时,若检测到起动命令,首先检测U、V、W的电平状态,判断转子位于哪一区间,查表可获得转子磁极的位置,根据U,V,W 相的电平高低的组合就可知道转子的区间范围
0-60° 60°-120° 120°-180° 180°-240° 240°-320° 320°-360°
U 1 1 1 0 0 0
V 0 0 1 1 1 0
W 1 0 0 0 1 1

可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。具体的测速方法有M法、T法和M/T法3种。
M/T法的计数值M1和M2,都随着转速的变化而变化,高速时,相当于M法测速,最低速时,M2=1,自动进入T法测速。因此M/T法的适用范围大于前两种,是目前应用广泛的一种测速方法。本系统也采用M/T法对永磁同步电机的转速进行检测。实际工作中,在固定的T时间内对光电编码器的脉冲计数,在第一个光电编码器上升沿定时器开始定时,同时开始记录光电编码器和时钟脉冲数,定时器定时T时间到,对光电编码器的脉冲停止计数,而在下一个光电编码器的上升沿到来时刻,时钟脉冲才停止记录。采用M/T法既具有M法测速的高速优点,又具有T法测速的低速的优点
第2个回答  2019-08-25
直流伺服电机具有良好的启动、制动和调速特性,可很方便的在宽范围内实现平滑无极调速,故多采用在对伺服电机的调速性能要求较高的生产设备中。
直流伺服电机的结构主要包括三大部分:
1)定子:定子磁极磁场由定子的磁极产生。根据产生磁场的方式,直流伺服电机可分为永磁式和他激式。永磁式磁极由永磁材料制成,他激式磁极由冲压硅钢片叠压而成,外绕线圈通以直流电流便产生恒定磁场。
(2)转子:又称为电枢,由硅钢片叠压而成,表面嵌有线圈,通以直流电时,在定子磁场作用下产生带动负载旋转的电磁转矩。
(3)电刷和换向片:为使所产生的电磁转矩保持恒定方向,转子能沿固定方向均匀的连续旋转,电刷与外加直流电源相接,换向片与电枢导体相接。
直流伺服电机的工作原理与一般直流电动机的工作原理市完全相同。他激直流电机转子上的载流导体(即电枢绕组)在定子磁场中受到电磁转矩的作用,使电机转子旋转。由直流电机的基本原理分析得到:
n=(u-iara)/ke
式中:n——电枢的转速,r/min
u——电枢电压
ia——电机电枢电流
ra——电枢电阻
ke——电势系数
(ke=ce&)
由上式可知,调节电机的转速有三种方法:
(1)改变电枢电压u。调速范围较大,直流伺服电机常用此方法调速。
(2)变磁通量&(即改变ke的值)。改变激磁回路的电阻rf以改变激磁电流if。可以打到改变磁通量的目的;调磁调速因其调速范围较小常常作为调速的辅助方法,而主要的调速方法是调压调速。若采用调压与调磁两种方法互相配合,可以获得很宽的调速范围,又可充分利用电机的容量。
(3)在电枢回路中串联调节电阻rt,此时有
n=〔u-ia(ra+rt)〕/ke
由上式可知,在电枢回路中串联电阻的办法,转速只能调低,而且电阻上的铜耗较大,这种办法并不经济。
相似回答