过C作CD,CE分别垂直于x轴,y轴,垂足分别是D,E
设∠OAB=θ 则∠OBA=π/2-θ
∵△ABC是等边三角形
∴∠CAB=∠CBA=π/3
那么∠CBE=∠0BA+∠CBA=π/2-θ+π/3=π-(θ+π/6)
∠CAD=π-(∠0AB+∠CAB)=π-(θ+π/3)
CE=BC·sin∠CBE
=a·sin[π-(θ+π/3)]
=a·sin(θ+π/3)
=a(sinθcosπ/3+sinπ/3cosθ)
=a(sinθ+√3cosθ)/2
CD=AC·sin∠CAD
=a·sin[π-(θ+π/6)]
=a·sin(θ+π/6)
=a(sinθcosπ/6+sinπ/6cosθ)
=a(√3sinθ+cosθ)/2
设C的坐标是(x,y)
则x=a(sinθ+√3cosθ)/2
y=a(√3sinθ+cosθ)/2
有sinθ+√3cosθ=2x/a——①
√3sinθ+cosθ=2y/a——②
①+②得:
(√3+1)(sinθ+cosθ)=2(x+y)/a
sinθ+cosθ=2(x+y)/[(√3+1)a]=(√3-1)(x+y)/a
(sinθ+cosθ)^2=[(√3-1)(x+y)/a]^2
1+2sinθcosθ=(4-2√3)(x+y)^2/a^2
2sinθcosθ=(4-2√3)(x+y)^2/a^2-1——③
①×②得:
√3(sinθ)^2+3sinθcosθ+sinθcosθ+√3(cosθ)^2=4xy/a^2
√3[(sinθ)^2+(cosθ)^2]+4sinθcosθ=4xy/a^2
√3+4sinθcosθ=4xy/a^2——④
把③代入④得:
√3+2(4-2√3)(x+y)^2/a^2-2=4xy/a^2
(√3-2)a^2+2(4-2√3)(x+y)^2=4xy
2(4-2√3)(x+y)^2-4xy=(2-√3)a^2
2(4-2√3)(2+√3)(x+y)^2-4(2+√3)xy=a^2
4(x^2-√3xy+y^2)=a^2
温馨提示:答案为网友推荐,仅供参考