急!太阳能的社会实际应用

以“太阳能的社会实际应用”为题目,写一篇文章!
语言要有科学根据……字数1000以上……
15号傍晚截至……

太阳能吸收式空调及供热综合系统
当前,世界各国都在加紧进行太阳能空调技术的研究。据调查,已经或正在建立太阳能空调系统的国家和地区有意大利、西班牙、德国、美国、日本、韩国、新加坡、香港等。这是由于发达国家的空调能耗在全年民用能耗中占有相当大的比重,利用太阳能驱动空调系统对节约常规能源、保护自然环境都具有十分重要的意义。
为了进一步拓宽太阳能的应用范围,使其在节能和环保中发挥更大的作用,我国在“九五”期间开展了太阳能空调技术研究,旨在通过技术攻关和系统示范,解决太阳能空调中的技术难题,从而为尽早实现太阳能空调的商业化打下技术基础。
一基本工作原理
太阳能吸收式空调系统主要由太阳集热器和吸收式制冷机两部分构成。
1吸收式制冷工作原理
吸收式制冷是利用两种物质所组成的二元溶液作为工质来进行的。这两种物质在同一压强下有不同的沸点,其中高沸点的组分称为吸收剂,低沸点的组分称为制冷剂。常用的吸收剂—制冷剂组合有两种:一种是溴化锂—水,通常适用于大型中央空调;另一种是水—氨,通常适用于小型空调。
吸收式制冷机主要由发生器、冷凝器、蒸发器和吸收器组成,如图1所示。
本文以溴化锂吸收式制冷机为例。在制冷机运行过程中,当溴化锂水溶液在发生器内受到热媒水加热后,溶液中的水不断汽化;水蒸气进入冷凝器,被冷却水降温后凝结;随着水的不断汽化,发生器内的溶液浓度不断升高,进入吸收器;当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量,从而达到降温制冷的目的;在此过程中,低温水蒸气进入吸收器,被吸收器内的浓溴化锂溶液吸收,溶液浓度逐步降低,由溶液泵送回发生器,完成整个循环。
2太阳能吸收式空调工作原理
所谓太阳能吸收式制冷,就是利用太阳集热器为吸收式制冷机提供其发生器所需要的热媒水。热媒水的温度越高,则制冷机的性能系数(亦称COP)越高,这样空调系统的制冷效率也越高。例如,若热媒水温度60℃左右,则制冷机COP约0�40;若热媒水温度90℃左右,则制冷机COP约0�70;若热媒水温度120℃左右,则制冷机COP可达1�10以上。
常规的吸收式空调系统主要包括吸收式制冷机、空调箱(或风机盘管)、锅炉等几部分,而太阳能吸收式空调系统是在此基础上再增加太阳集热器、储水箱和自动控制系统。太阳能吸收式空调系统可以实现夏季制冷、冬季采暖、全年提供生活热水等多项功能,其工作原理如图2所示。

制冷、供热功率(kW) 100
空调、采暖面积(m2) 1000
热水供应量 32
(非空调采暖季节)(吨/天)
集热器
类型 热管式真空管
采光面积(m2) 540
平均日效率(%) 35-40(空调、采暖时)
51(提供热水时)
制冷机
类型 热水型单级溴化锂
热媒水温度(℃) 88
冷媒水温度(℃) 8
性能系数(COP) 0.07

在夏季,被集热器加热的热水首先进入储水箱,当热水温度达到一定值时,由储水箱向制冷机提供热媒水;从制冷机流出并已降温的热水流回储水箱,再由集热器加热成高温热水;制冷机产生的冷媒水通向空调箱,以达到制冷空调的目的。当太阳能不足以提供高温热媒水时,可由辅助锅炉补充热量。
在冬季,同样先将集热器加热的热水进入储水箱,当热水温度达到一定值时,由储水箱直接向空调箱提供热水,以达到供热采暖的目的。当太阳能不能够满足要求时,也可由辅助锅炉补充热量。
在非空调采暖季节,只要将集热器加热的热水直接通向生活用储水箱中的热交换器,就可将储水箱中的冷水逐渐加热以供使用。

二空调及供热综合示范系统

为了将太阳能吸收式空调技术付诸实际应用,根据“九五”国家科技攻关计划任务,北京市太阳能研究所于1999年9月建成一套我国目前最大的太阳能吸收式空调及供热综合示范系统(见压题照片)。
1安装地点概况
太阳能空调示范系统建在山东省乳山市。乳山市位于山东半岛的东南端,北接烟台,西临青岛,南濒黄海。该地区有较好的太阳能资源,年平均日太阳辐照量为17�3MJ/m2。当地夏季最高气温33�1℃,冬季最低气温-7�8℃,夏季和冬季分别有制冷和采暖的要求,因此是安装太阳能空调系统的合适地点。
乳山市银滩旅游度假区利用本地区自然条件,大力发展旅游事业,正在筹建“中国新能源科普公园”。科普公园计划建造包括风能馆、太阳能馆等在内的8个馆、厅。太阳能空调系统就建在科普公园内的太阳能馆。
在这里人们不仅可以参观太阳能科普展品,增长太阳能科普知识,了解最新的太阳能技术,并且在参观和娱乐的同时可亲身感受到太阳能空调和采暖所营造的舒适环境。
2主要技术性能
新建的太阳能空调系统由热管式真空管集热器、溴化锂吸收式制冷机、储热水箱、储冷水箱、生活用储热水箱、循环泵、冷却塔、空调箱、辅助燃油锅炉和自动控制系统等部分组成。系统安装完成后,经过冬、春、夏三季运行和测试,达到表1的主要技术性能。
3系统设计特点
(1)太阳能与建筑有机结合
整个太阳能馆的总体设计既使建筑物造型美观、新颖别致,又能满足集热器安装的要求。依据这个原则,建筑物的南立面采用大斜屋顶结构,一则斜面的面积比平面大得多,可以布置更多的集热器;二则在斜面上布置集热器时无需考虑前后遮挡问题,而且造型也非常美观。斜屋顶倾角取35°,与当地纬度接近,有利于集热器充分发挥作用。
(2)热管式真空管集热器提高了制冷和采暖效率
热管式真空管集热器是北京市太阳能研究所的一项重大科技成果,具有效率高、耐冰冻、启动快、保温好、承压高、耐热冲击、运行可靠等诸多优点,是组成高性能太阳能空调系统的重要部件。热管式真空管集热器可为高效溴化锂制冷机提供88℃的热媒水,从而提高整个系统的制冷效率;这种集热器还可在北方寒冷的冬季有效地工作,为建筑物供暖。
(3)大小两个储热水箱加快了每天制冷或采暖进程
根据一天内太阳辐照度变化的固有特点,储热水箱不仅可以使系统稳定运行,还可以把太阳辐照高峰时的多余能量以热水形式储存起来。本系统与一般太阳能空调系统的不同之处在于设置了大、小两个储热水箱。小储热水箱主要用于保证系统的快速启动。测试结果表明,在夏季和冬季晴天的早晨,小储热水箱内水温就能分别达到88℃和60℃,从而满足制冷和供暖的要求。
(4)专设的储冷水箱降低了系统的热量损失
尽管储热水箱可以储存能量,但它的能力毕竟是有限的。本系统专门设计了一个储冷水箱。在白天太阳辐照充裕的情况下,可以将制冷机产生的冷媒水储存在储冷水箱内,其优点在于这种情况下的系统热量损失显然要比以热媒水形式储存在储热水箱中低得多,因为夏季环境温度与冷媒水温度之间的温差要明显小于热媒水温度与环境温度之间的温差。
(5)配套的辅助锅炉使系统可以全天候运行
所有太阳能系统的运行都不可避免地要受到气候条件的影响。为使系统可以全天候发挥空调、采暖功能,辅助的常规能源是必不可少的。该太阳能空调系统选用了辅助燃油热水锅炉,在白天太阳辐照量不足以及夜间需要继续用冷或用热时,可随即启动辅助锅炉,确保系统持续稳定地运行。
(6)系统运行及工况之间切换均能自动控制
在利用太阳能部分地替代常规能源的系统中,系统启动、能量储存以及太阳能与常规能源之间切换等功能的自动化都显得尤为重要;另外,本系统设置了几个储水箱,如何在不同的工况下自动启用不同的水箱,走不同的管路,也是系统正常运行的关键;再则,太阳能系统还应可靠地解决自动防过热和防冻结的问题。因此,我们为该太阳能空调系统设计了一套安全可靠、功能齐全的自动控制系统。

三推广应用前景

实践证明,采用热管式真空管集热器与溴化锂吸收式制冷机相结合的太阳能空调技术方案是成功的,它为太阳能热利用技术开辟了一个新的应用领域。
太阳能吸收式空调与常规空调相比,具有以下三大明显的优点:
(1)太阳能空调的季节适应性好,也就是说,系统制冷能力随着太阳辐射能的增加而增大,而这正好与夏季人们对空调的迫切要求一致;
(2)传统的压缩式制冷机以氟里昂为介质,它对大气层有极大的破坏作用,而吸收式制冷机以无毒、无害的溴化锂为介质,它对保护环境十分有利;
(3)同一套太阳能吸收式空调系统可以将夏季制冷、冬季采暖和其它季节提供热水结合起来,显著地提高了太阳能系统的利用率和经济性。
诚然,凡事都要一分为二。我们在强调太阳能空调优点的同时,也应看到它目前存在的局限性,因而在推广应用过程中注意解决这些问题:
(1)虽然太阳能空调开始进入实用化阶段,希望使用太阳能空调的用户不断增加,但目前已经实现商品化的产品大都是大型的溴化锂制冷机,只适用于单位的中央空调。对此,空调制冷界正在积极研究开发各种小型的溴化锂或氨—水吸收式制冷机,以便与太阳集热器配套逐步进入家庭;
(2)虽然太阳能空调可以无偿利用太阳能资源,但由于自然条件下的太阳辐照度不高,使集热器采光面积与空调建筑面积的配比受到限制,目前只适用于层数不多的建筑。对此,我们正在加紧研制可产生水蒸气的真空管集热器,以便与蒸气型吸收式制冷机结合,进一步提高集热器与空调建筑面积的配比;
(3)虽然太阳能空调可以大大减少常规能源的消耗,大幅度降低运行费用,但目前系统的初投资仍然偏高,只适用于有限的富裕用户。为此,我们正在坚持不懈地降低现有真空管集热器的成本,使越来越多的单位和家庭具有使用太阳能空调的经济承受能力。
近年来,地球表面温度逐年上升,人们对夏季空调的要求越来越强烈,安装空调已成为我国大部分地区的一股消费浪潮。我们相信,太阳能吸收式空调系统可以发挥夏季制冷、冬季采暖、全年提供热水的综合优势,必将取得显著的经济、社会和环境效益,具有广阔的推广应用前景。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2006-12-12
所谓宇宙太阳能发电站是指在宇宙空间进行大规模的太阳能发电,然后通过无线电波将电力输送到地面。此系统如果建成,人类将会获得取之不尽的绿色能源。 1990年,日本政府在休斯顿举行的各国政府首脑会议上提出了“地球新生计划”,该计划列出了今后100年可使地球环境新生的战略技术,这就是核聚变和宇宙太阳能发电。
所谓太阳能发电就是利用半导体将光能直接转换成电能的发电方法,利用当前的技术可将10%的光能转换成电能。为使发电过程不排放对人体有害的氮氧化物等气体、放射性废弃物及造成地球变暖的二氧化碳,人们期待着开发绿色发电技术。依靠太阳光发电不仅能满足人类活动所需的大部分能源,而且能对地球环境问题的解决做出重大贡献。
但是,在地面上每平方米仅能获得约1千瓦的电力,而且太阳能的利用还要受天气因素的影响。为了弥补这一不足,有人曾提出在日照充足的沙漠地带建造大规模太阳光发电站的设想,但在地面上夜间不能发电。
利用阳光发电的最好方法是不断地用太阳能在宇宙空间发电。1968年,美国人格雷齐尔提出了建造宇宙太阳能发电卫星的设想。他提出将卫星发射到静止轨道,然后利用微波将太阳电池获得的电力送到地面,这样人类便可获得无限的绿色能源。
静止轨道就是位于赤道上空36000公里的圆形轨道。静止轨道上的卫星与地球的自转周期是一致的,即每日自转1周,所以从地面上看卫星总是处在同一位置上。而且静止轨道上的太阳光强度为地面上的大约1�4倍。除日食期间外,可以不分昼夜、不分季节和不管天气好坏进行发电,因此,在宇宙空间太阳能的利用率约是地面上利用率的10倍。
宇宙空间发电所得的电力用微波送往地面。送电用的微波是光波(即电磁波)的一种,属于卫星广播、微波炉、移动电话使用的波长范围。

满足美国的总电力需求

经历了70年代的石油危机后,美国能源部与美国航空航天局合作,自1976年开始实施宇宙太阳能发电的研究,其研究内容有,假定21世纪之初美国所需的3亿千瓦电力全部由宇宙太阳能发电提供的话,会对环境、经济、社会等方面产生什么样的影响,同时还要将宇宙太阳能与火力、核能、核聚变等其他发电方法进行比较。
当时研究的发电卫星叫做“参考系统”,一颗卫星就是一个5公里×10公里的庞然大物,如果把它发射到静止轨道上,可发电500万千瓦。按每颗卫星总重量50000吨计算,每年发射2颗,在30年内计划总计要发射60颗卫星。
研究人员经过对用微波送电对地球环境的影响、能效等多方面考察,最终得出了应推进阳光发电卫星研究这一结论。但由于难以预测的巨大建造成本等问题,这项研究于1980年终止。
这一结果,使得世界各国对宇宙太阳发电的兴趣急剧降温。但是,随着近年来地球环境问题的日益严重,对宇宙太阳发电的认识又有所改变,自80年代后期开始重新掀起了宇宙太阳发电热。在日本,1987年由国家公立大学和研究所的研究人员组成了文部省宇宙科学研究所“太阳发电卫星研究小组”。日本政府又于1990年成立了“SPS2000”宇宙太阳发电系统实用化研究小组,该小组的研究一直持续至今。1997年又成立了既有理学、工学,又有法学和经济学方面人士参加的“太阳发电卫星研究会”。目前该研究会的事务局设在东京大学,正在从事研究信息的交换及对外信息的提供。1998年日本科技厅成立了宇宙太阳发电研究委员会,专门研究其安全性及经济性问题。最近美国航天局重新开始了对宇宙太阳发电的研究,虽然对其成本问题尚未进行研究,但1998年后将会大幅增加研究经费,而且研究的进度将会加快。

日本的SPS2000计划

所谓SPS2000是指最迟到2000年在围绕地球的轨道上组建输出10000千瓦的太阳能发电卫星,首先把发射轨道定在赤道上空1100公里处,供电范围定在赤道附近的一些国家。该计划规定
:1)发电卫星将成为与地面发电厂的成本可以竞争的发电站;2)发电卫星建成后,它将发展为更大规模的发电系统。
迄今为止,由于SPS2000尚未列入正式的国家研究计划之中,因此,2000年就不能实现发射。但在以现有的技术设计的宇宙太阳发电系统中,SPS2000是目前世界上唯一的宇宙太阳发电系统。
在SPS2000中所设计的太阳发电卫星是一个边长为336米的正三角棱柱体,柱的全长为303米,总重量为240吨,在棱柱体两个面上镶有太阳电池板,剩下的一面装设有发送微波的天线。卫星的骨架由铝管组成,骨架用机器人和自动组装机进行组装。卫星建成后由机器人进行保养,由于采用的是1100公里的低轨道,所以发出的电力仅够日本使用,但赤道附近的国家每天约有12次接收电力的机会。
太阳电池使用的是薄片状非晶硅太阳电池。非晶硅太阳电池的特点是重量轻、柔软性好、成本低、易批量生产。现在日本原子能研究所正在给这种非晶硅电池照射相当于宇宙空间30年所承受的电子射线、质子射线、离子束及紫外线,以研究其老化的程度。
太阳电池发的电被转换成微波后送往地面。以现在的技术,如果将100瓦的直流电转换成微波,要损失30%的能量。目前所制定的目标是将转换效率提高到75%。
送电效率约50%
在地面上接收微波需架设接收天线,接收天线可将卫星传送来的70%的微波转换成电能。因此在SPS2000计划中,太阳电池板发电的50%在地面上可得以利用。
微波送电时,受电设施需向卫星发射诱导信号,这样卫星便可向受电设施传送微波。一个地方的受电设施每2小时可接收到约230秒的微波。要想用微波接收全部电力需架设直径2公里的接收天线。这种规模大小的受电设施所得到的电力,可连续提供约250千瓦的电力。在日本,250千瓦是300个家庭的用电量。在SPS2000计划中,计划将受电设施建在赤道地区的无电村。
据测试,SPS2000计划中的微波受电地区局限于北纬3度-南纬3度的地带。目前已对坦桑尼亚、埃及、印尼、巴布亚新几内亚、厄瓜多尔、马尔代夫、马来西亚等国家进行了预备调查。被调查的这些国家都很关注SPS2000计划,并愿意对受电设施的建设给予协作。
送电使用的微波频率为2.45千兆赫,这一频率处于卫星广播(约12千兆赫)和地面UHF广播(约0.77千兆赫)使用的电波频率之间。地面上送电的能量密度最高为0.0001瓦/米2,所以2.45千兆赫符合国际安全标准。例如法律规定,使用2.45千兆赫的
电子微波炉泄漏的微波,在离炉体5厘米的场所,应控制在0.0005瓦/米2以下。
但是电磁波对生态系统、地球环境的影响尚有很多不明了之处,长期送电是否对环境产生影响还需进行必要的研究。

移动电话小型化技术的诞生

目前人造卫星的制造成本为每吨100亿日元,如果按照现在掌握的宇宙技术制造SPS2000计划所需的重240吨的太阳发电卫星,需要约20000亿日元。1998年始建的国际空间站的总重量约460吨,预算为270亿美元。根据通产省新能源产业技术综合开发机构的规定,地面上太阳发电设施的成本已于1996年降至每千瓦约150万日元。如按照这一数据计算,建造与SPS2000相同的输出功率为10000千瓦的地面太阳发电站只需150亿日元,也就是说,用以往的宇宙技术建造太阳发电卫星是不经济的。
SPS2000使用地面上用的非晶体硅太阳电池实际上是一个大胆的设想,其目的是将建设成本降到卫星制造与建设成本的1/100。目前人造卫星上使用的太阳电池与地面上使用的太阳电池的成本之比为100:1。
发电卫星其他的主体结构单元是微波接收天线和卫星骨架。SPS2000使用半导体元件将电力转换成微波。最近快速普及的移动电话为太阳发电卫星的实现创造了条件。移动电话也使用微波,移动电话的小型化和低成本化显示出微波发送与接收技术的快速发展。这一技术革新如果得到利用,SPS2000微波送电使用的接收天线将会大大减小。
为降低宇宙空间的建设成本,需要开发无人自动组装技术。现在研究小组正在通过阳光发电进行组装SPS2000卫星骨架的实验。

宇宙太阳能发电将加速太空旅行时代的到来

目前就一般的发射成本而言,向围绕地球的较低轨道发射卫星,每公斤成本为100万日元。SPS现阶段的总重量为240吨,发射预算为2400亿日元。根据科技厅1996年对各领域的4000多名专家的“第6次技术预测调查”,2014年用火箭发射宇宙卫星的费用可降到目前的1/10以下。
如果实现发射低成本化,各种需求会应运而生。例如,宇宙旅行或许会商业化。假如以每公斤20000-30000日元计,60公斤重的人,花120万-180万日元便可实现去宇宙旅行的梦想。这种低价格还会产生更多的需求,宇宙太阳发电的实用化或许会与宇宙旅行商业化同时到来。
目前日本宇宙科学研究所正在使用可重复使用的火箭试验装置,进行未来型宇宙运输系统的基础研究。1998年已进行了试验装置发动机的燃烧试验,计划很快进行飞行试验。

宇宙太阳发电是否能成为有用的系统

为实现太阳发电,就必须评价总能源收支情况。必须对卫星零部件制造、卫星发射升空及受电设施制造等项成本多少年可回收进行综合评价。
对造成地球变暖的二氧化碳排放也应进行综合评价。1996年庆应大学的吉冈完治教授等人假定,太阳能发电卫星的耐用年数为30年,并将其与火力发电、核能发电等其他发电方式的二氧化碳排放量进行了比较。这项研究显示,1千瓦宇宙太阳发电系统的二氧化碳排放量为17克,煤炭火力发电为1225克,石油火力发电为846克,液化天然气火力发电为631克,核能发电为22克。在宇宙太阳发电的情况下,制作太阳电池、火箭及火箭燃料时还要产生二氧化碳。综合研究结果表明,核能发电产生的二氧化碳量最少,如果用宇宙太阳发电保证日本所用电量,所排放的二氧化碳总量约占现在二氧化碳排放量的1/30。

21世纪中期将迎来宇宙太阳发电时代

由于SPS2000尚未列入正式国家研究计划,因此,卫星系统的制造还未开始。目前SPS2000研究小组考虑于2010年发射宇宙太阳能发电卫星。现在通过设计研究的技术课题已经明确,但该系统究竟能否成为有实用价值的系统还要靠制作及发射的实际数据进行判断。只要全社会意见一致,2040年将会大规模发射卫星,21世纪后期,100万千瓦级、500万千瓦级的巨大宇宙太阳发电站将会出现。
第2个回答  2006-12-12
太阳能热水器
太阳能灶
第3个回答  2006-12-13
太阳能热水器
相似回答